
DBS

Lecture Notes to
Big Data Management and Analytics

Winter Term 2017/2018

Apache Flink

 Matthias Schubert, Matthias Renz, Felix Borutta, Evgeniy
Faerman, Christian Frey, Klaus Arthur Schmid, Daniyal

Kazempour, Julian Busch

 2016-2018

Introduction to Apache Flink

• Apache Flink is an open source

Stream Processing Framework

• Low latency

• High throughput

• Stateful Operators

• Distributed Execution

• Developed at the Apache Software Foundation

• 1.0.0 released in March 2016, used in production

Big Data Management and Analytics - Apache Flink 2

Flink Software Stack

Big Data Management and Analytics - Apache Flink 3

System Legacy

Map
Reduce
OSDI’04

Apache
Hadoop 1

Dryad,
Nephele

EusoSys’07
Apache Tez

PACTs
SOCC’10
VLDB’12

Apache Flink

RDDs
HotCloud

10, NSDO’12

Apache
Spark

Big Data Management and Analytics - Apache Flink 4

Architecture

...

A
ct

or
 S

ys
te

m

Flink Client

Code using API

A
ct

or
 S

ys
te

m

Graph Builder & Optimizer

A
ct

or
 S

ys
te

m

Scheduler

Checkpoint Coordinator

dataflow
graph

Job Manager

Memory/IO Manager

Network Manager

task
slot

task
slot

task
slot

A
ct

or
 S

ys
te

m

Memory/IO Manager

Network Manager

task
slot

task
slot

task
slot

Dataflow Graph

• task status
• heartbeats
• statistics
• trigger checkpoints

data
streams

Big Data Management and Analytics - Apache Flink 5

Dataflow Graphs

• all APIs (e.g. DataSet, DataStream,)
compile to Dataflow Graphs

• (stateful) operators (filter, joins,..)
= nodes

• data streams = links

• in parallel processing split into:
• operators are executed in subtasks

• stream partitions

• streams may p2p, broadcast, merge,
fan-out, repartitions

Src1 Src2
stateful
operator

Snk1

Snk1

IS1 IS2

OP1

IS2

intermediate
data stream

Big Data Management and Analytics - Apache Flink 6

Intermediate Data Streams

• blocking data exchange: output is generated, stored and then exchanged with
the consumer. (->complete intermediate results of a stream must be stored)

a
b
a
a
b
a

(a,1)
(b,1)

(a,1)
(a,1)

(b,1)
(a,1)

map shuffle reduce

(a,1)
(b,1)

a
b
a
a
b
a

(a,1)
(b,1)
(a,1)
(a,1)
(b,1)
(a,1)

(a,{1,1,1,1})
(b,{1,1})

map shuffle reduce

(a,4)
(b,2)

(a,{1})
(b,{1})

(a,{1,1}) (a,2)
(a,{1,1,1}) (a,3)

(b,{1,1}) (b,2)
(a,{1,1,1,1}) (a,4)

• core abstraction for data exchange

• may or may not be materialized on disk

• pipelined execution: data is continuously produced,
buffered and consumed

a
b
a
a
b
a

Big Data Management and Analytics - Apache Flink 7

Latency and Throughput

Data exchange based on buffers:
• data record ready => one/many buffers
• buffer is sent to consumer when it is full / time out

⇒ the large buffers increase throughput (less overhead)
⇒ low time out enable low latencies

(real time processing = data is processed within a guaranteed time limit)

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

0 5 10 50 100
Buffer timeout (milliseconds)

Th
ro

ug
hp

ut
(A

ve
ra

ge
in

m
ill

io
ns

of
ev

en
ts

/s
ec

)

La
te

nc
y

99
th

-p
er

ce
nt

ile
in

m
ill

ise
co

nd
s

Big Data Management and Analytics - Apache Flink 8

Control Events and Fault Tolerance

• Examplary types of control events:

• check point barrier: coordinate checkpoints by dividing
stream into pre-checkpoint and post-checkpoint

• watermarks: signaling the progress of event-time within the
stream partition

• iteration barriers: signals end of a superstep for iterative
processing

• Control events are injected into the stream and provide operator
nodes the position in the data set.

• reliable execution with exactly once

• consistency is guaranteed (no availability on all nodes)

• check-pointing and partial re-execution

• based on the assumption that data source is persistent and
replayable
(e.g. files, Apache Kafka)

• regular snapshots to prevent unbounded recomputation
Big Data Management and Analytics - Apache Flink 9

Asynchronous Barrier Snapshotting

• barrier corresponds to a logical time => separate the stream to mark
the snapshotted part

• barriers are injected into the stream
• wait until all barriers from input are received
• write out state to durable storage (=disk)
• checkpoint barriers are sent from upstream to downstream after

checkpoint
• recovery: restart computation from the last successful snapshot

time

data stream

t1 barrier t2 barrier t3 barrier

snap
shotting

snap
shotting

snap t1 snap t2

Big Data Management and Analytics - Apache Flink 10

Iterative Data Flows
• Iterative algorithms are often employed for Data Mining, Machine

Learning or Graph processing

• in other cloud-based computation frameworks (e.g. Hadoop, Spark):

• run a loop in the client program

• in each iteration a parallel execution is started
(compare to k-Means on Hadoop)

• Flink provides an integrated iteration processing

• iteration step = special operators contain execution graphs

• iteration head and iteration tail are connected via feedback stream
(handles what to keep between iterations)

Iteration Step

Src SNK

feedback stream
loop control
event

data record
outside loop

data record in
loop transit

Big Data Management and Analytics - Apache Flink 11

Stream Processing with Dataflows

• Flink manages time: out-of-order events, windows, user-defined states

• two notions of time:

• event time: time when the event is originated (e.g. timestamp)

• processing time: wall-clock time of processing the event at worker X

• Skew between both is possible in distributed environments:
objects may arrive out of order with respect to event time

• low watermarks: mark global progress measure
(e.g. all events lower than timestamp t have entered an operator)

• Watermarks originate at the sources of the graph

• operators decide how to react

• operators with multiple inputs forward minimal watermarks

Big Data Management and Analytics - Apache Flink 12

Stateful Streams Processing

• stateless operators: operator works independent for all
inputs

• for example simple map function in word count : lambda x: (x,1)

• no memory, not depending on the input order

• stateful operators: operator has an internal state
• for example: regression function: a⋅x+t.

(a and t are trained over the stream of input data)

• the state stores models parameters

• states are incorporated into the API by :
• operator interfaces registering local variables

• operator-state abstractions for declaring portioned key-value states as
there associated operations

• states can be checkpointed
Big Data Management and Analytics - Apache Flink 13

Stream Windows

• Stateful operator configured via:

• assigner: assigns each record to one/many logical windows

• trigger(optional): states the time an operation on the windows is performed

• evictor(optional): defines which records to retain in each window

• Predefined operator available e.g. sliding time window

• user-defined functions allow flexible customizing

• Examples:
stream
.window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS))
.trigger(EventTimeTrigger.create())

stream
.window(GlobalWindow.create())
.trigger(Count.of(1000))
.evict(Count.of(100))

Big Data Management and Analytics - Apache Flink 14

Batch Processing

• batch processing can be considered as special case of streams
(bounded streams)

• Syntax for batch processing can be defined in a simpler way

• additional options for optimizing the processing might be possible

⇒ Flink offers additional functionality for batch processing

⇒ Blocked execution: break up large computations to isolated stages

⇒ No periodic snapshotting when overhead is large
instead use last materialized intermediate stream

⇒ blocking is implemented as an operator explicitly waiting until the
complete input is consumed => runtime environment does not distinguish

⇒ disk spill-off might become necessary

⇒ Flink provides a dedicated DataSet API with familiar functions e.g. map

⇒ Query optimization is used to transform API programs into efficient graphs

Big Data Management and Analytics - Apache Flink 15

Query Optimization
• query optimizer is built on techniques from parallel databases:

• plan equivalence

• cost modeling

• interesting-property propagation

• problem the operators have no predefined semantics
(user defined functions!)

• cardinality and cost-estimation are hard to perform
for the same reasons

• support execution strategies such as:

• repartition and broadcast

• sort-based grouping

• sort- and hash-based joins

• Optimizer evaluated physical plans by interesting property propagation

• costs include disk I/O and CPU cost

• to handle user defined functions, hints are allowed

Big Data Management and Analytics - Apache Flink 16

Memory Management

• Flink serializes data into memory segments instead of using the JVM heap
• operations work as much as possible on the binary data

=> reduces the overhead for serialization /deserialization
• for arbitrary objects, Flink uses type inference and custom serialization
• Binary representation and storing data off-heap reduces garbage collection

overhead
• spilling data to disk is still fallback in case

public class WC {
public String word;
public int count;

}

empty
page

Pool of Memory Pages

JV
M

H
ea

p

Flink Managed
Heap

Network Buffers

Unmanaged
Heap

Big Data Management and Analytics - Apache Flink 17

Batch Iterations

• iterative methods are common in data analytics:
• parallel gradient descent
• expectation maximization

• Parallelization methods for iterative methods
• Bulk Synchronous Parallel (BSP)
• Stale Synchronous Parallel (SSP)

• Flink allows various iteration methods by providing iteration control
events

• For example: in BSP mark begin and end of supersteps
• includes novel optimization concepts:

• delta iterations: exploit sparse computational dependencies

red.

map join

join

Big Data Management and Analytics - Apache Flink 18

API Examples

Word Count in Java

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
.map (l ‐> l.split(“\\W+”))
.flatMap ((String[] tokens,
Collector<Tuple2<String, Integer>> out) ‐> { Arrays.stream(tokens)
.filter(t ‐> t.length() > 0)
.forEach(t ‐> out.collect(new Tuple2<>(t, 1)));

})
.groupBy(0)
.sum(1);
env.execute("Word Count Example");

Big Data Management and Analytics - Apache Flink 19

API Examples

k-Means in Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<Point> points = getPointDataSet(params, env);
DataSet<Centroid> centroids = getCentroidDataSet(params, env);

IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations",
10));

DataSet<Centroid> newCentroids = points.map(new
SelectNearestCenter()).withBroadcastSet(loop, "centroids").map(new CountAppender())
.groupBy(0).reduce(new CentroidAccumulator())
.map(new CentroidAverager());

DataSet<Centroid> finalCentroids = loop.closeWith(newCentroids);

DataSet<Tuple2<Integer, Point>> clusteredPoints = points
.map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids");

Big Data Management and Analytics - Apache Flink 20

References

• https://flink.apache.org/

• Carbone et. Al: Apache Flink: Stream and Batch Processing in a Sinlge
Engine, IEEE Bulletin of the Technical Committee on Data Engineering,
2015

• Christian Boden: Introduction to Apache Flink,
Technologie-Workshop „Big Data“ FZI Karlsruhe, 22. Juni 2015

Big Data Management and Analytics - Apache Flink 21

https://flink.apache.org/

	Lecture Notes to�Big Data Management and Analytics�Winter Term 2017/2018�Apache Flink
	Introduction to Apache Flink
	Flink Software Stack
	System Legacy
	Architecture
	Dataflow Graphs
	Intermediate Data Streams
	Latency and Throughput
	Control Events and Fault Tolerance
	Asynchronous Barrier Snapshotting
	Iterative Data Flows
	Stream Processing with Dataflows
	Stateful Streams Processing
	Stream Windows
	Batch Processing
	Query Optimization
	Memory Management
	Batch Iterations
	API Examples
	API Examples
	References

