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Introduction to Apache Flink

• Apache Flink is an open source

Stream Processing Framework

• Low latency

• High throughput

• Stateful Operators

• Distributed Execution

• Developed at the Apache Software Foundation

• 1.0.0 released in March 2016, used in production
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Flink Software Stack
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Architecture
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Dataflow Graphs

• all APIs (e.g. DataSet, DataStream,) 
compile to Dataflow Graphs

• (stateful) operators (filter, joins,..)
= nodes

• data streams = links

• in parallel processing split into:
• operators are executed in subtasks

• stream partitions

• streams may p2p, broadcast, merge, 
fan-out, repartitions
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Intermediate Data Streams

• blocking data exchange: output is generated, stored and then exchanged with 
the consumer. (->complete intermediate results of a stream must be stored)
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• core abstraction for data exchange

• may or may not be materialized on disk

• pipelined execution: data is continuously produced,
buffered and consumed
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Latency and Throughput

Data exchange based on buffers:
• data record ready => one/many buffers
• buffer is sent to consumer when it is full / time out

⇒ the large buffers increase throughput (less overhead)
⇒ low time out enable low latencies 

(real time processing = data is processed within a guaranteed time limit)

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

0 5 10 50 100
Buffer timeout (milliseconds)

Th
ro

ug
hp

ut
(A

ve
ra

ge
in

m
ill

io
ns

of
ev

en
ts

/s
ec

)

La
te

nc
y

99
th

-p
er

ce
nt

ile
in

m
ill

ise
co

nd
s

Big Data Management and Analytics - Apache Flink 8



Control Events and Fault Tolerance

• Examplary types of control events:

• check point barrier: coordinate checkpoints by dividing 
stream into pre-checkpoint and post-checkpoint

• watermarks: signaling the progress of event-time within the 
stream partition

• iteration barriers: signals end of a superstep for iterative 
processing

• Control events are injected into the stream and provide operator 
nodes the position in the data set. 

• reliable execution with exactly once 

• consistency is guaranteed (no availability on all nodes)

• check-pointing and partial re-execution

• based on the assumption that data source is persistent and 
replayable
(e.g. files, Apache Kafka)

• regular snapshots to prevent unbounded recomputation
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Asynchronous Barrier Snapshotting

• barrier corresponds to a logical time => separate the stream to mark 
the snapshotted part

• barriers are injected into the stream
• wait until all barriers from input are received
• write out state to durable storage (=disk)
• checkpoint barriers are sent from upstream to downstream after 

checkpoint
• recovery: restart computation from the last successful snapshot

time

data stream
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snap 
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Iterative Data Flows
• Iterative algorithms are often employed for Data Mining, Machine 

Learning or Graph processing

• in other cloud-based computation frameworks (e.g. Hadoop, Spark):

• run a loop in the client program

• in each iteration a parallel execution is started
(compare to k-Means on Hadoop)

• Flink provides an integrated iteration processing

• iteration step = special operators contain execution graphs

• iteration head and iteration tail are connected via feedback stream
(handles what to keep between iterations)
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Stream Processing with Dataflows

• Flink manages time: out-of-order events, windows, user-defined states

• two notions of time: 

• event time: time when the event is originated (e.g. timestamp)

• processing time: wall-clock time of processing the event at worker X

• Skew between both is possible in distributed environments:
objects may arrive out of order with respect to event time

• low watermarks: mark global progress measure
(e.g. all events lower than timestamp t have entered an operator)

• Watermarks originate at the sources of the graph

• operators decide how to react

• operators with multiple inputs forward minimal watermarks
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Stateful Streams Processing

• stateless operators: operator works independent for all 
inputs

• for example simple map function in word count : lambda x: (x,1)

• no memory, not depending on the input order

• stateful operators: operator has an internal state
• for example: regression function: a⋅x+t. 

(a and t are trained over the stream of input data)

• the state stores models parameters

• states are incorporated into the API by :
• operator interfaces registering local variables

• operator-state abstractions for declaring portioned key-value states as 
there associated operations

• states can be checkpointed
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Stream Windows

• Stateful operator configured via:

• assigner: assigns each record to one/many logical windows

• trigger(optional): states the time an operation on the windows is performed

• evictor(optional): defines which records to retain in each window

• Predefined operator available e.g. sliding time window

• user-defined functions allow flexible customizing

• Examples:
stream
.window(SlidingTimeWindows.of(Time.of(6,  SECONDS),  Time.of(2,  SECONDS))
.trigger(EventTimeTrigger.create())

stream
.window(GlobalWindow.create())
.trigger(Count.of(1000))
.evict(Count.of(100))
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Batch Processing

• batch processing can be considered as special case of streams
(bounded streams)

• Syntax for batch processing can be defined in a simpler way

• additional options for optimizing the processing might be possible

⇒ Flink offers additional functionality for batch processing

⇒ Blocked execution: break up large computations to isolated stages

⇒ No periodic snapshotting when overhead is large
instead use last materialized intermediate stream

⇒ blocking is implemented as an operator explicitly waiting until the 
complete input is consumed => runtime environment does not distinguish 

⇒ disk spill-off might become necessary

⇒ Flink provides a dedicated DataSet API with familiar functions e.g. map

⇒ Query optimization is used to transform API programs into efficient graphs
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Query Optimization
• query optimizer is built on techniques from parallel databases:

• plan equivalence

• cost modeling 

• interesting-property propagation

• problem the operators have no predefined semantics
(user defined functions!)

• cardinality and cost-estimation are hard to perform
for the same reasons

• support execution strategies such as:

• repartition and broadcast

• sort-based grouping

• sort- and hash-based joins

• Optimizer evaluated physical plans by interesting property propagation

• costs include disk I/O and CPU cost

• to handle user defined functions, hints are allowed
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Memory Management

• Flink serializes data into memory segments instead of using the JVM heap
• operations work as much as possible on the binary data

=> reduces the overhead for serialization /deserialization
• for arbitrary objects, Flink uses type inference and custom serialization
• Binary representation and storing data off-heap reduces garbage collection 

overhead
• spilling data to disk is still fallback in case 

public class WC { 
public String word;
public int count;

}
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Batch Iterations

• iterative methods are common in data analytics:
• parallel gradient descent
• expectation maximization

• Parallelization methods for iterative methods
• Bulk Synchronous Parallel (BSP)
• Stale Synchronous Parallel (SSP)

• Flink allows various iteration methods by providing iteration control 
events

• For example: in BSP mark begin and end of supersteps
• includes novel optimization concepts:

• delta iterations: exploit sparse computational dependencies

red.

map join

join
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API Examples

Word Count in Java

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
.map (l ‐> l.split(“\\W+”))
.flatMap ((String[] tokens,
Collector<Tuple2<String, Integer>> out) ‐> { Arrays.stream(tokens)
.filter(t ‐> t.length() > 0)
.forEach(t ‐> out.collect(new Tuple2<>(t, 1)));

})
.groupBy(0)
.sum(1);
env.execute("Word Count Example");
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API Examples

k-Means in Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<Point> points = getPointDataSet(params, env);
DataSet<Centroid> centroids = getCentroidDataSet(params, env);

IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations", 
10));

DataSet<Centroid> newCentroids = points.map(new 
SelectNearestCenter()).withBroadcastSet(loop, "centroids").map(new CountAppender())
.groupBy(0).reduce(new CentroidAccumulator())
.map(new CentroidAverager());

DataSet<Centroid> finalCentroids = loop.closeWith(newCentroids);

DataSet<Tuple2<Integer, Point>> clusteredPoints = points
.map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids");
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