Introduction to Apache Flink

- Apache Flink is an open source Stream Processing Framework
- Low latency
- High throughput
- Stateful Operators
- Distributed Execution
- Developed at the Apache Software Foundation
- 1.0.0 released in March 2016, used in production
System Legacy

- Map Reduce (OSDI’04)
 - Dryad, Nephele (Eusys’07)
 - PACTs (SOCC’10, VLDB’12)
 - RDDs (HotCloud 10, NSDO’12)
 - Apache Flink
 - Apache Tez
 - Apache Hadoop 1
 - Apache Spark

Big Data Management and Analytics - Apache Flink
Architecture

Flink Client

Code using API

Graph Builder & Optimizer

Dataflow Graph

Actor System

Job Manager

dataflow graph

Scheduler

Checkpoint Coordinator

Actor System

Memory/IO Manager

Network Manager

Actor System

• task status
• heartbeats
• statistics
• trigger checkpoints

Actor System

Memory/IO Manager

Network Manager

Big Data Management and Analytics - Apache Flink
Dataflow Graphs

- all APIs (e.g. DataSet, DataStream,) compile to Dataflow Graphs

- (stateful) operators (filter, joins,..) = nodes

- data streams = links

- in parallel processing split into:
 - operators are executed in subtasks
 - stream partitions

- streams may p2p, broadcast, merge, fan-out, repartitions
Intermediate Data Streams

- core abstraction for data exchange
- may or may not be materialized on disk
- **pipelined execution**: data is continuously produced, buffered and consumed

- **blocking data exchange**: output is generated, stored and then exchanged with the consumer. (->complete intermediate results of a stream must be stored)
Latency and Throughput

Data exchange based on buffers:
• data record ready => one/many buffers
• buffer is sent to consumer when it is full / time out

⇒ the large buffers increase throughput (less overhead)
⇒ low time out enable low latencies
 (real time processing = data is processed within a guaranteed time limit)
Control Events and Fault Tolerance

- Exemplary types of control events:
 - **check point barrier**: coordinate checkpoints by dividing stream into pre-checkpoint and post-checkpoint
 - **watermarks**: signaling the progress of event-time within the stream partition
 - **iteration barriers**: signals end of a superstep for iterative processing

- Control events are **injected into the stream** and provide operator nodes the position in the data set.

- reliable execution with **exactly once**
- **consistency is guaranteed** (no availability on all nodes)
- check-pointing and partial re-execution
- based on the assumption that data source is **persistent and replayable** (e.g. files, Apache Kafka)
- regular snapshots to **prevent unbounded recomputation**
Asynchronous Barrier Snapshotting

- barrier corresponds to a logical time => separate the stream to mark the snapshotted part
- barriers are injected into the stream
- wait until all barriers from input are received
- write out state to durable storage (=disk)
- checkpoint barriers are sent from upstream to downstream after checkpoint
- recovery: restart computation from the last successful snapshot
Iterative Data Flows

- Iterative algorithms are often employed for Data Mining, Machine Learning or Graph processing
- in other cloud-based computation frameworks (e.g. Hadoop, Spark):
 - run a loop in the client program
 - in each iteration a parallel execution is started
 (compare to k-Means on Hadoop)
- Flink provides an integrated iteration processing
- iteration step = special operators contain execution graphs
- iteration head and iteration tail are connected via feedback stream
 (handles what to keep between iterations)
Stream Processing with Dataflows

- **Flink manages time**: out-of-order events, windows, user-defined states
- **two notions of time**:
 - event time: time when the event is originated (e.g. timestamp)
 - processing time: wall-clock time of processing the event at worker X
- **Skew between both is possible** in distributed environments: objects may arrive out of order with respect to event time
- **low watermarks**: mark global progress measure (e.g. all events lower than timestamp t have entered an operator)
- Watermarks **originate at the sources of the graph**
- **operators decide** how to react
- operators with multiple inputs forward **minimal watermarks**
Stateful Streams Processing

• stateless operators: operator works independent for all inputs
 • for example simple map function in word count: \(\text{lambda } x: (x,1) \)
 • no memory, not depending on the input order

• stateful operators: operator has an internal state
 • for example: regression function: \(a \cdot x + t \).
 \((a \text{ and } t \text{ are trained over the stream of input data}) \)
 • the state stores models parameters

• states are incorporated into the API by:
 • operator interfaces registering local variables
 • operator-state abstractions for declaring portioned key-value states as there associated operations

• states can be checkpointed
Stream Windows

- Stateful operator configured via:
 - **assigner**: assigns each record to one/many logical windows
 - **trigger**(optional): states the time an operation on the windows is performed
 - **evictor**(optional): defines which records to retain in each window

- Predefined operator available e.g. sliding time window
- user-defined functions allow flexible customizing
- Examples:

  ```java
  stream
     .window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS))
     .trigger(EventTimeTrigger.create())
  
  stream
     .window(GlobalWindow.create())
     .trigger(Count.of(1000))
     .evict(Count.of(100))
  ```
Batch Processing

- batch processing can be considered as special case of streams (bounded streams)
- Syntax for batch processing can be defined in a simpler way
- additional options for optimizing the processing might be possible

⇒ Flink offers additional functionality for batch processing
⇒ Blocked execution: break up large computations to isolated stages
⇒ No periodic snapshotting when overhead is large instead use last materialized intermediate stream
⇒ blocking is implemented as an operator explicitly waiting until the complete input is consumed ⇒ runtime environment does not distinguish
⇒ disk spill-off might become necessary
⇒ Flink provides a dedicated DataSet API with familiar functions e.g. map
⇒ Query optimization is used to transform API programs into efficient graphs
Query Optimization

• query optimizer is built on techniques from parallel databases:
 • plan equivalence
 • cost modeling
 • interesting-property propagation
• problem the operators have no predefined semantics (user defined functions!)
• cardinality and cost-estimation are hard to perform for the same reasons
• support execution strategies such as:
 • repartition and broadcast
 • sort-based grouping
 • sort- and hash-based joins
• Optimizer evaluated physical plans by interesting property propagation
• costs include disk I/O and CPU cost
• to handle user defined functions, hints are allowed
Flink serializes data into memory segments instead of using the JVM heap operations work as much as possible on the binary data => reduces the overhead for serialization/deserialization for arbitrary objects, Flink uses type inference and custom serialization Binary representation and storing data off-heap reduces garbage collection overhead spilling data to disk is still fallback in case
Batch Iterations

- iterative methods are common in data analytics:
 - parallel gradient descent
 - expectation maximization

- Parallelization methods for iterative methods
 - Bulk Synchronous Parallel (BSP)
 - Stale Synchronous Parallel (SSP)

- Flink allows various iteration methods by providing iteration control events
- For example: in BSP mark begin and end of supersteps
- includes novel optimization concepts:
 - delta iterations: exploit sparse computational dependencies
Word Count in Java

```java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
.map (l -> l.split("\W+"))
.flatMap ((String[] tokens, Collector<Tuple2<String, Integer>> out) -> { Arrays.stream(tokens)
.filter(t -> t.length() > 0)
.forEach(t -> out.collect(new Tuple2<>(t, 1)));
})
.groupBy(0)
.sum(1);
env.execute("Word Count Example");
```
k-Means in Java

```java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<Point> points = getPointDataSet(params, env);
DataSet<Centroid> centroids = getCentroidDataSet(params, env);

IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations", 10));

DataSet<Centroid> newCentroids = points.map(new SelectNearestCenter()).withBroadcastSet(loop, "centroids").map(new CountAppender()).groupBy(0).reduce(new CentroidAccumulator()).map(new CentroidAverager());

DataSet<Centroid> finalCentroids = loop.closeWith(newCentroids);

DataSet<Tuple2<Integer, Point>> clusteredPoints = points.map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids");
```
References

- https://flink.apache.org/