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Course Logistics

• Course website: 
http://www.dbs.ifi.lmu.de/cms/studium_lehre/lehre_master/bigdata1718/index.html

• Registration for course & exams via: 
https://uniworx.ifi.lmu.de/?action=uniworxCourseWelcome&id=798

• Organization:
• Lecture: Prof. Dr. Matthias Schubert
• Assisting: Daniyal Kazempour, Julian Busch

Component When Where Starts at

Lecture Tue, 13.00 - 16.00 h
Room S 004 
(Schellingstr. 3)

17.10.2017

Tutorial 1 Wed, 14.00 - 16.00 h Room D Z007 (HGB) 25.10.2017

Tutorial 2 Wed, 16.00 - 18.00 h Room D Z007 (HGB) 25.10.2017

Tutorial 3 Thu, 16.00 - 18.00 h
Room B 185 (Edmund-
Rumpler-Str. 13)

26.10.2017

Tutorial 4 Thu, 14.00 - 16.00 h
Room B 185 (Edmund-
Rumpler-Str. 13)

26.10.2017

Course Logisitics
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What is Data Analytics and AI?
• Foundations of Data Analytics and AI

• Drivers of modern Data Science

• The Knowledge Discovery Process

• Big Data Management 

• Typical Data Mining Tasks

• Deep Learning

• Artificial Intelligence and Data Analytics

• Reinforcement Learning
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Foundations: Prediction  and AI
How to make decisions?
• What do you know about the current situation ?
• What are your options ?
• Which option is the best?
• How many decisions do I have to make until reaching 

my goal?

Problems:
• Parts of your current situation might be unknown or 

not modeled
• Considering all options is often not possible
• Considering all possible impacts of choosing an option 

is often not possible.
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Foundations: Data Analytics and AI
Uncertain situation:
• Impact of fracking to ground water
• True population of a species

Uncertain impacts :
• What would be the impact of grants for renewables in 

Alberta?
• What are the long term effects of fracking/oil sand 

usage?

Considering all options:
• Which kinds of grants and funds should be provided?
• What are the newest technical solutions?
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Foundations: Data Analytics and AI
So where does data analytics and AI help?

• Modelling uncertain situations and results
(Data Analysis)

• Predict latent situation parameters

• Predict uncertain outcomes 

• Consider possible long-term impacts of decisions 
(both)

• Develop strategies for achieving long-term goals (AI)
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Foundations: Data Analytics
• Statistics (ca. 1663 /some claim even 5 century B.C.)

• Neural Computing (ca. 1943)

• Artificial Intelligence (ca. 1955)

• Machine Learning (ca. 1959)

• Pattern Recognition (ca. 1990 Begriff 1950)

• Data Mining and Knowledge Discovery (ca. 1996)
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Drivers of Modern Data Sciences
• Preconditions to Big Data Analytics and modern AI:

• Internet and broadband connections: allowed to 
publish information easily, access information from a 
huge amount of sources

• Data Storage: hard drives became larger and cheaper. 
SSDs make background storage faster. Larger/faster 
main memory

• Mobile devices: collect personal and spatial data
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http://blog.rentacomputer.com/2012/09/18/dont-ever-
lose-your-data-again-with-a-storage-server-rental/

http://www.ubergizmo.com/2013/01/china-policy-demands-
new-residences-have-fiber-optic-connections/
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Drivers of Modern Data Sciences
• Cloud computing: distributed computations on 

thousands of commodity machines 

• Commodity GPUs: dedicated numerical processing 
power Cheaper sensors/camera: affordable monitoring

• IoT and sensors: monitoring installations and 
environments

• RC and autonomous mobile units: UAVs, rovers,..
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Drivers of Modern Data Sciences
• Impacts on data analytics and AI:

• more data: complex problems become feasible:

• before: available samples only allowed simple models

• now: complex models can  be trained because sample 
sets become huge (several millions+)

• more computational power: 

• before: complex models did not finish training

• now: models with several thousand parameters on 
millions of samples are possible

• scalability: 

• before: predictors where done for dedicated cases

• now: building personalized models for millions of 
cases is possible
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Summary
• Some applications already worked out fine centuries 

before.

• A lot of ideas where created in the 1950 with the first 
computers, but did not work out.

• Recent breakthroughs in classical problems

• Image processing

• Speech recognition

• Automatic translation

• AI for board games (e.g. AlphaGo)

• New possibilities and tasks due to:

• more available data

• complex prediction networks
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The Knowledge Discovery Process

• Knowledge Discovery is the technical process of knowledge 
generation

• process is iterative: If results are not satisfying, change the process 
and try again. (change parameters, more data, different data 
representations, a simpler goal,..)

metricspatterns
functions

Focussing

Preprocessing

Transformation

Data Mining

Evaluation
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Data Cleaning and Integration
• …may take 60% of effort

• integration of data from different sources
– mapping of attribute names (e.g. C_Nr → O_Id)

– joining different tables 
(e.g. Table1 = [C_Nr, Info1]
and Table2 = [O_Id,  Info2] ⇒
JoinedTable = [O_Id, Info1, Info2])

• elimination of inconsistencies
• elimination of noise
• computation of Missing Values (if necessary and possible)
• fill in missing values by some strategy (e.g. default value, average 

value, or application specific computations)

databases/
information repositories

data cleaning,
data integration

“data warehouse“
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Focusing on Task-Relevant Data
• Find useful features, dimensionality/variable reduction,

invariant representation

• creating a target data set

• selections
• Select the relevant tuples/rows from the database tables

(e.g., sales data for the year 2001)

• projections
• Select the relevant attributes/columns from the database tables

(e.g., “id”, “date” “amount” from (Id, name, date, location, amount))

• transformations, e.g.:
• normalization (e.g., age:[18, 87]  n_age:[0, 100])

• discretization of numerical attributes
(e.g., amount:[0, 100]  d_amount:{low, medium, high})

• computation of derived tuples/rows and derived attributes
• aggregation of sets of tuples ( e.g., total amount per months )
• new attributes 

( e.g., diff = sales current month – sales previous month )

“data warehouse“

transformation,
selection, 
projection

task-relevant
data
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Basic Data Mining Tasks
• searching for patterns of interest

• choosing functions of data mining:

• Clustering

• Classification

• Frequent Patterns

• Other methods
• outlier detection

• sequential patterns

• trends and analysis of changes

• methods for special data types, e.g., spatial data mining, web 
mining

• … 

• choosing the mining algorithm(s)

task-relevant
data

patterns

data mining
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Evaluation and Visualization
• pattern evaluation and knowledge presentation:
– Visualization, transformation, removing redundant patterns, etc.

• integration of visualization and data mining

• data visualization

• data mining result visualization

• data mining process visualization

• Interactive visual data mining

• different types of 2D/3D plots, charts and diagrams are 
used, e.g.: Box-plots, trees, X-Y-Plots, parallel coordinates

• use of discovered knowledge

patterns

visualization,
evaluation

knowledge
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Data Management
• more data causes more handling problems:

• data from foreign sources usually has no clear structure
(what does a number mean, how is the information related)

• => date exploration to find out what is there?

• data integration data from different sources (integrate once 
all vs. on demand integration) 

• how to structure the data (data variety)

• when is data changed/updated (data volatility)

• streaming data (data arrives constantly)

• batch data  (data arrives in large bulks)

• selecting and manipulating data should be easy

• data quality must be addressed (missing, synchronization, 
errors, e.t.c.) (data veracity)
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Data Management
handling data volume:
Small data: (data fits into the main memory)
• file system: csv-files, excel files, arff
• read everything from file into memory
• manipulate data in memory (e.g. excel,python)
Medium data: (data fits on machine but not into memory)
• database systems, files
• read only necessary part of the data (replace data in 

memory)
• manipulate data on disk (e.g. SQL queries, temporary views)
Big data: (data does not fit on one machine) 
• NoSQL databases, distributed file systems (e.g. 

Cassandra,HDFS)
• Manipulate data using cloud frame work (e.g. map reduce, 

Spark)
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Business Perspective: A new business model

=> People pay with data

• e.g., Facebook, Google, Twitter:

• use service => provide data

• data is used for target advertisement

• (you pay indirectly)

• e.g., Amazon:

• pay service + give data

• sells data and uses data to improve service

What else is Big Data?
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• Volume: integrated data from many sources
• volume on disk
• number of instances or features

• Velocity: data is changing/new data is arriving
• sensors constantly produce data
• communication is constantly going on

• Variety: not all data is the same
• data can have different structures:

vectors, sequences, graphs, tensors
• different sources rely on different formats

• Veracity: the meaning of the data is unsecure
• inputs may be noisy, manipulated or misinterpreted
• consider data objects as samples not facts

Four V’s of Big Data
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Four V’s of Big Data
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Literature does not agree upon the # of Vs defining Big Data

Examples:

• Laney 2001 
Laney D. 3D data management: controlling data volume, velocity, and variety, META 
Group, Tech. Rep. 2001. http://blogs.gartner.com/doug-laney/files/2012/01/ad949-
3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.

talks about 3 Vs: volume, velocity, and variety

• later in Van Rijmenam 2014 and Borne 2014
van Rijmenam M. Why the 3v’s are not sufficient to describe big data, BigData
Startups, Tech. Rep. 2013.
http://www.bigdata-startups.com/3vs-sufficient-describe-big-data/.
it is pointed out that 3Vs are insufficient. 
In addition to volume, velocity, and variety, further 7 Vs are identified: 
veracity, validity, value, variability, venue, vocabulary, and vagueness

Alternative Definitions
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Classification
• Class labels are known for a set of “training data”:

Find models/functions/rules (based on attribute values of 
the training examples) that 

• describe and distinguish classes

• predict class membership for “new” objects

• Applications

• image classification

• document categorization

• land usage classification from arial images

a a
a

b

b

b
b

ba
a

b

a
b

a
a

a

b b
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Prediction
• numerical output values are known for a small set of “training data”

• find models/functions (based on attribute values of the training 
examples) that 
• describe the numerical output values of the 

training data (Major method for prediction is regression)

• predict the numerical value for “new” objects 

• applications

• build a model of the housing values, which can be 
used to predict the price for a house in a certain area

• build a model of an engineering process as a basis to 
control a technical system

• . .

Wind
speed

Delay of
flight

query

predicted
value

Wind turbine
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Clustering
• class labels are unknown: 

group objects into sub-groups (clusters)
• similarity function (or dissimilarity function = distance) 

to measure similarity between objects

• objective: “maximize” intra-class similarity and 
“minimize” interclass similarity

• applications
• customer profiling/segmentation

• document or image collections 

• web access patterns

• . . .
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Outlier Detection
• find data which are uncommon in the given distribution

(e.g. measuring errors, critical system conditions, network 
intrusion, DNS-Attacks to Servers etc.)

• model what is “normal” to the given data distribution:
• models should be accurate for common cases

• models might contain varying levels of assumption (kNN-based vs. Statistical 
Process)

• everything which isn’t normal w.r.t. to the model is an outlier?
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Frequent Itemset Mining
• find frequent patterns in transaction databases

– Frequently co-occurring items in the set of transactions
(frequent itemsets): indicate correlations or causalities

• applications:

• market-basket analysis 
• cross-marketing 
• catalog design
• also used as a basis for clustering, classification
• association rule mining: Determine correlations between 

different itemsets

Examples:

buys(x, “diapers”)  buys(x, “beers”) [support: 0.5%, confidence: 60%]
major(x, “CS”) ^ takes(x, “DB”)  grade(x, “A”) [support: 1%, confidence: 75%]

Transaction ID Items Bought
2000 A,B,C
1000 A,C
4000 A,D
5000 B,E,F
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other types of Analysis
• Trends and Evolution Analysis
• Sequential Patterns (find re-occurring sequences of events)
• Spatial Data Mining

• spatial outlier prediction and clustering
• spatial prediction
• trajectory analysis

• Graph Mining:
• link prediction
• community detection
• network centrality

• methods for special data types, and applications e.g., 
• Natural Language Processing
• Web Mining
• Bio-KDD
• . . .
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Deep Learning

• often a KDD Process involves several transformation 
and learning task

• combining multiple learners increases the quality

⇒ Deep Architectures 
• integrate data transformation and model training

(input raw data -> output target variables)
• joint optimization (instead of training each step 

separately)

29Big Data Management and Analytics
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Deep Learning
• paradigms for modelling the connection between

raw data to abstract results:
• artificial neural networks:

• connect multiple functions fn(fn-1(f…(f1(x)..)) = y
(each output is the input of the next step)

• training by minimizing a loss function 
L(fn…(f1(x)..), y)

• optimization is done by gradient descent
• statistical graphical models

• generative Bayesian models
• compute the posterior p(y|x,θ)
• training by Gibbs Sampling,.. 
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example: Image Recognition
• Conventional Imaging: Imaging Pipeline handcrafted to a 

the problem (develop function and chain them)

• Current Development: Use Convolutional and Deep Neural 
Networks on the Raw Pixel data

• Strong performance increase in object recognition

• Applications:
• search engines and data management
• autonomous driving and robotics
• remote sensing
• surveillance tasks

• Works on excessive amount of data and usually requires a 
lot of Hardware (e.g. GPU computers) for training
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Convolutional NN for Image Recognition

Last
Layer

Nguyen et al. arXiv 2014

Zeiler et al.
arXiv 2013, ECCV 2014

Layer 2 Layer 5

slide credit Jason Yosinski

Gabor filter: linear filters used for edge 
detection with similar orientation 
representations to the human visual system
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LeNet5 (Winner ImageNet competition) 
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Evolution of Performance
PASCAL VOC-2007
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other directions in Deep Neural Networks

• Recurrent Neural Networks: e.g. long short-term 
memory

• models long term dependencies in time series

• used in speech, text and signal processing

–(e.g. automatic translation and chat bots)

• Autoencoders: learn compact representations 

• Generative Adversarial Networks (GANs): build data 
generator for based on observed examples

• Deep Dreams: visualize intermediate results to make 
image detection better understandable

• …
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example: Generative Adversarial Networks

36Big Data Management and Analytics

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7



Example: Image Fusion

37Big Data Management and Analytics

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image 
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Artificial Intelligence and Data Analytics
• AI is an extremely broad subject within CS: 
• tasks: reasoning, problem solving, knowledge 

representation,  planning, learning, natural language 
processing, perception, motion and manipulation, 
social intelligence, creativity, general intelligence

⇒ some major overlap to machine learning and data 
analytics

• for this talk, I will focus on the following aspects:
• analytics: predict unknown values and abstract from 

given data (What will happen?)
• artificial intelligence: (here: strong focus on planning)

find the best strategy to optimize a goal
(What should I do?)
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The data pyramid
• raw data is often big

• in selection and preprocessing data shrinks

• for complex tasks high-quality data is often still small
(e.g. not enough labels, noise, irrelevant, too high 
resolution)

⇒ Big Data systems often found in the first steps of the 
of the KDD process where scalability and efficiency 
play a role

39
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preprocessed 

usable

labeled
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The Lambda Architecture
• never change/delete data, store original

and transformed data
• distinguish between speed and batch layer

– speed layer: indexes batch view for interactive access
– batch layer: breaks down all data to batch views
– serving layer: high frequency update/latest data

• any query can be answered by combination service and speed 
layer

40

new 
data

batch layer

speed layer

sevice layer

master 
db

real-time 
view

batch 
view

query
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• Data Science: The Big Picture

• NoSQL Systems

• Hadoop / HDFS / MapReduce

• Apache Spark

• Data Streams & Streaming Methods

• Apache Flink

• Stream Analytics

• Text Data

• High-Dimensional Data

• Graph Data

Volume

Velocity

Variety

Course Contents
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Literature
• This course is mainly based on a mixture of existing external lectures, 

Surveys, Papers and Reports on Big Data

• There is NO, or better, I’m not aware of a single book or script that is 
equivalent to this course (and addresses all issues discussed in this 
course)

• Since Big Data is a quite new and hot topic, standards and basic concepts 
are quite dynamic => The Web is a very appropriate source of relevant 
information

• External lectures basically used for this course:

• Big Data: Donald Kossmann & Nesime Tatbul, Systems Group ETH 
Zurich - http://www.systems.ethz.ch/node/217

• Mining of Massive Datasets: Jure Leskovec, Anand Rajaraman, Jeff 
Ullman, Stanford University - http://www.mmds.org

• Further material will appear at our web page 
(check for updates during the course / open to further suggestions!)
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