

Big Data Management and Analytics Winter Term 2017/2018

© Matthias Schubert 2018

Course Logisitics

Course website:

http://www.dbs.ifi.lmu.de/cms/studium_lehre/lehre_master/bigdata1718/index.html

 Registration for course & exams via: https://uniworx.ifi.lmu.de/?action=uniworxCourseWelcome&id=798

Organization:

Lecture: Prof. Dr. Matthias Schubert

Assisting: Daniyal Kazempour, Julian Busch

Component	When	Where	Starts at
Lecture	Tue, 13.00 - 16.00 h	Room S 004 (Schellingstr. 3)	17.10.2017
Tutorial 1	Wed, 14.00 - 16.00 h	Room D Z007 (HGB)	25.10.2017
Tutorial 2	Wed, 16.00 - 18.00 h	Room D Z007 (HGB)	25.10.2017
Tutorial 3	Thu, 16.00 - 18.00 h	Room B 185 (Edmund- Rumpler-Str. 13)	26.10.2017
Tutorial 4	Thu, 14.00 - 16.00 h	Room B 185 (Edmund- Rumpler-Str. 13)	26.10.2017

What is Data Analytics and Al?

- Foundations of Data Analytics and Al
- Drivers of modern Data Science
- The Knowledge Discovery Process
- Big Data Management
- Typical Data Mining Tasks
- Deep Learning
- Artificial Intelligence and Data Analytics
- Reinforcement Learning

Foundations: Prediction and Al

How to make decisions?

- What do you know about the current situation?
- What are your options?
- Which option is the best?
- How many decisions do I have to make until reaching my goal?

Problems:

- Parts of your current situation might be unknown or not modeled
- Considering all options is often not possible
- Considering all possible impacts of choosing an option is often not possible.

Foundations: Data Analytics and Al

Uncertain situation:

- Impact of fracking to ground water
- True population of a species

Uncertain impacts:

- What would be the impact of grants for renewables in Alberta?
- What are the long term effects of fracking/oil sand usage?

Considering all options:

- Which kinds of grants and funds should be provided?
- What are the newest technical solutions?

Foundations: Data Analytics and Al

So where does data analytics and AI help?

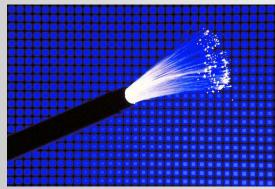
- Modelling uncertain situations and results (Data Analysis)
 - Predict latent situation parameters
 - Predict uncertain outcomes
- Consider possible long-term impacts of decisions (both)
- Develop strategies for achieving long-term goals (AI)

Foundations: Data Analytics

- Statistics (ca. 1663 /some claim even 5 century B.C.)
- Neural Computing (ca. 1943)
- Artificial Intelligence (ca. 1955)
- Machine Learning (ca. 1959)
- Pattern Recognition (ca. 1990 Begriff 1950)
- Data Mining and Knowledge Discovery (ca. 1996)

Drivers of Modern Data Sciences

- Preconditions to Big Data Analytics and modern AI:
- Internet and broadband connections: allowed to publish information easily, access information from a huge amount of sources
- Data Storage: hard drives became larger and cheaper.
 SSDs make background storage faster. Larger/faster main memory
- Mobile devices: collect personal and spatial data



http://www.ubergizmo.com/2013/01/china-policy-demands-new-residences-have-fiber-optic-connections/

http://blog.rentacomputer.com/2012/09/18/dont-ever-lose-your-data-again-with-a-storage-server-rental/

Drivers of Modern Data Sciences

- Cloud computing: distributed computations on thousands of commodity machines
- Commodity GPUs: dedicated numerical processing power Cheaper sensors/camera: affordable monitoring
- IoT and sensors: monitoring installations and environments
- RC and autonomous mobile units: UAVs, rovers,...

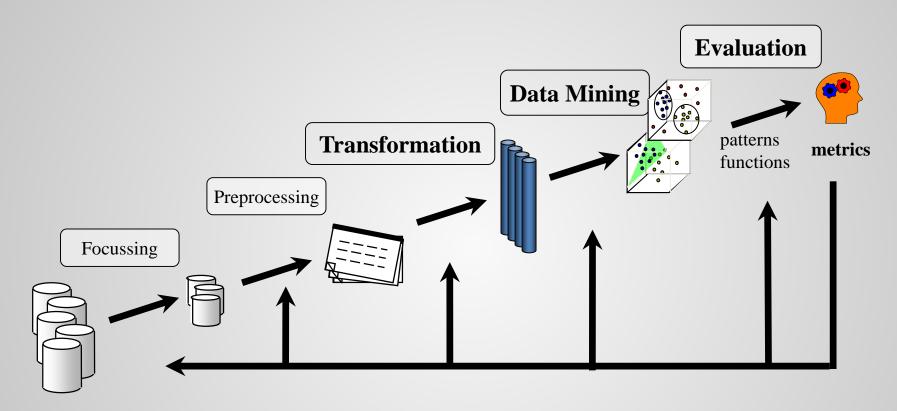
Drivers of Modern Data Sciences

- Impacts on data analytics and AI:
- more data: complex problems become feasible:
 - before: available samples only allowed simple models
 - now: complex models can be trained because sample sets become huge (several millions+)
- more computational power:
 - before: complex models did not finish training
 - now: models with several thousand parameters on millions of samples are possible
- scalability:
 - before: predictors where done for dedicated cases
 - now: building personalized models for millions of cases is possible

Summary

- Some applications already worked out fine centuries before.
- A lot of ideas where created in the 1950 with the first computers, but did not work out.
- Recent breakthroughs in classical problems
 - Image processing
 - Speech recognition
 - Automatic translation
 - Al for board games (e.g. AlphaGo)
- New possibilities and tasks due to:
 - more available data
 - complex prediction networks

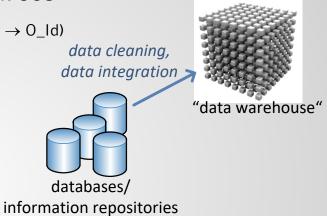
The Knowledge Discovery Process



- Knowledge Discovery is the technical process of knowledge generation
- process is iterative: If results are not satisfying, change the process and try again. (change parameters, more data, different data representations, a simpler goal,..)

Data Cleaning and Integration

- ...may take 60% of effort
- integration of data from different sources
- mapping of attribute names (e.g. C_Nr → O_Id)
- joining different tables
 (e.g. Table1 = [C_Nr, Info1]
 and Table2 = [O_Id, Info2] ⇒
 JoinedTable = [O_Id, Info1, Info2])



- elimination of inconsistencies
- elimination of noise
- computation of Missing Values (if necessary and possible)
- fill in missing values by some strategy (e.g. default value, average value, or application specific computations)

Focusing on Task-Relevant Data

- Find useful features, dimensionality/variable reduction, invariant representation
- creating a target data set
- selections
 - Select the relevant tuples/rows from the database tables (e.g., sales data for the year 2001)
- projections
 - Select the relevant attributes/columns from the database tables (e.g., "id", "date" "amount" from (Id, name, date, location, amount))
- transformations, e.g.:
 - normalization (e.g., age:[18, 87] → n_age:[0, 100])
 - discretization of numerical attributes
 (e.g., amount:[0, 100] → d_amount:{low, medium, high})
 - computation of derived tuples/rows and derived attributes
 - aggregation of sets of tuples (e.g., total amount per months)
 - new attributes
 (e.g., diff = sales current month sales previous month)

transformation,

projection >

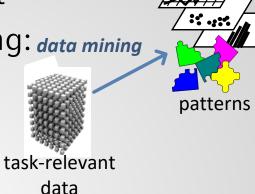
"data warehouse"

task-relevant

data

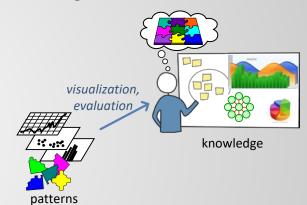
Basic Data Mining Tasks

- searching for patterns of interest
- choosing functions of data mining: data mining
 - Clustering
 - Classification
 - Frequent Patterns
 - Other methods
 - outlier detection
 - sequential patterns
 - trends and analysis of changes
 - methods for special data types, e.g., spatial data mining, web mining
 - ...
- choosing the mining algorithm(s)



Evaluation and Visualization

- pattern evaluation and knowledge presentation:
- Visualization, transformation, removing redundant patterns, etc.
- integration of visualization and data mining
 - data visualization
 - data mining result visualization
 - data mining process visualization
 - Interactive visual data mining



- different types of 2D/3D plots, charts and diagrams are used, e.g.: Box-plots, trees, X-Y-Plots, parallel coordinates
- use of discovered knowledge

Data Management

- more data causes more handling problems:
- data from foreign sources usually has no clear structure (what does a number mean, how is the information related)
- => date exploration to find out what is there?
- data integration data from different sources (integrate once all vs. on demand integration)
- how to structure the data (data variety)
- when is data changed/updated (data volatility)
 - streaming data (data arrives constantly)
 - batch data (data arrives in large bulks)
- selecting and manipulating data should be easy
- data quality must be addressed (missing, synchronization, errors, e.t.c.) (data veracity)

Data Management

handling data volume:

Small data: (data fits into the main memory)

- file system: csv-files, excel files, arff
- read everything from file into memory
- manipulate data in memory (e.g. excel,python)

Medium data: (data fits on machine but not into memory)

- database systems, files
- read only necessary part of the data (replace data in memory)
- manipulate data on disk (e.g. SQL queries, temporary views)

Big data: (data does not fit on one machine)

- NoSQL databases, distributed file systems (e.g. Cassandra, HDFS)
- Manipulate data using cloud frame work (e.g. map reduce, Spark)

What else is Big Data?

Business Perspective: A new business model

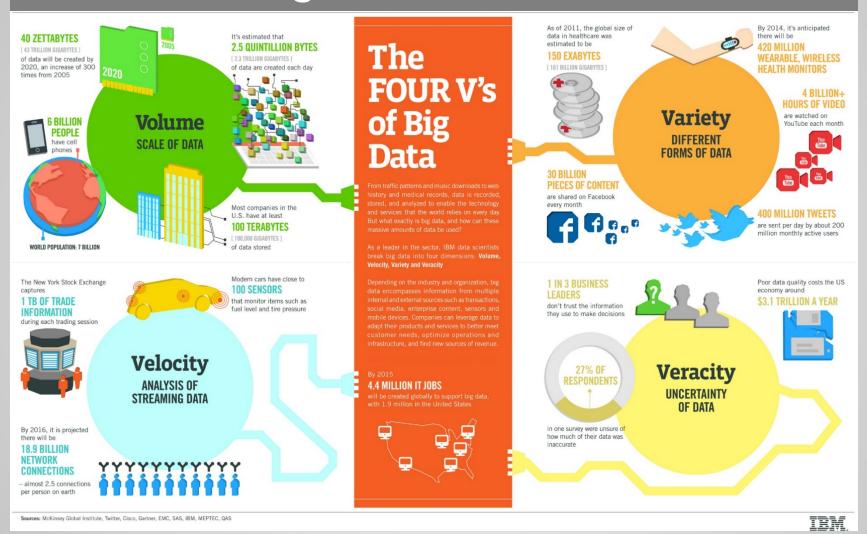
=> People pay with data

- e.g., Facebook, Google, Twitter:
 - use service => provide data
 - data is used for target advertisement
 - (you pay indirectly)
- e.g., Amazon:
 - pay service + give data
 - sells data and uses data to improve service

Four V's of Big Data

- Volume: integrated data from many sources
 - volume on disk
 - number of instances or features
- Velocity: data is changing/new data is arriving
 - sensors constantly produce data
 - communication is constantly going on
- Variety: not all data is the same
 - data can have different structures: vectors, sequences, graphs, tensors
 - different sources rely on different formats
- Veracity: the meaning of the data is unsecure
 - inputs may be noisy, manipulated or misinterpreted
 - consider data objects as samples not facts

Four V's of Big Data



Alternative Definitions

Literature does not agree upon the # of Vs defining Big Data

Examples:

Laney 2001

Laney D. 3D data management: controlling data volume, velocity, and variety, META Group, Tech. Rep. 2001. http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.

talks about 3 Vs: volume, velocity, and variety

later in Van Rijmenam 2014 and Borne 2014

van Rijmenam M. Why the 3v's are not sufficient to describe big data, BigData Startups, Tech. Rep. 2013.

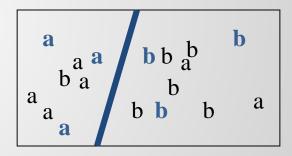
http://www.bigdata-startups.com/3vs-sufficient-describe-big-data/.

it is pointed out that 3Vs are insufficient.

In addition to volume, velocity, and variety, further 7 Vs are identified: veracity, validity, value, variability, venue, vocabulary, and vagueness

Classification

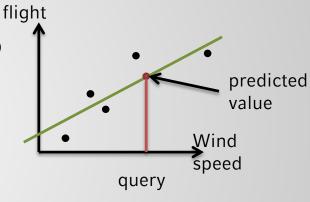
- Class labels are known for a set of "training data":
 Find models/functions/rules (based on attribute values of the training examples) that
 - describe and distinguish classes
 - predict class membership for "new" objects
- Applications
 - image classification
 - document categorization
 - land usage classification from arial images

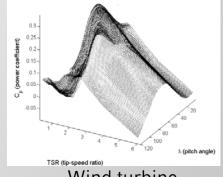


Prediction

- numerical output values are known for a small set of "training data"
- find models/functions (based on attribute values of the training examples) that Delay of
 - describe the numerical output values of the training data (Major method for prediction is regression)
 - predict the numerical value for "new" objects

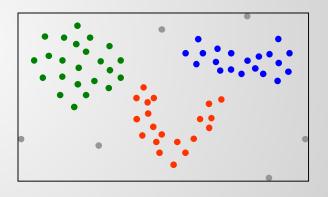
- build a model of the housing values, which can be used to predict the price for a house in a certain area
- build a model of an engineering process as a basis to control a technical system





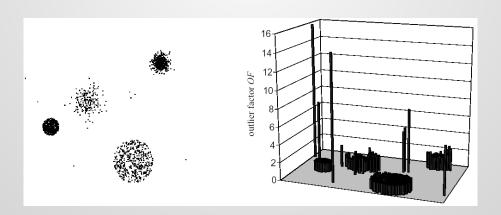
Clustering

- class labels are unknown: group objects into sub-groups (clusters)
 - similarity function (or dissimilarity function = distance)
 to measure similarity between objects
 - objective: "maximize" intra-class similarity and "minimize" interclass similarity
- applications
 - customer profiling/segmentation
 - document or image collections
 - web access patterns
 - . . .



Outlier Detection

- find data which are uncommon in the given distribution (e.g. measuring errors, critical system conditions, network intrusion, DNS-Attacks to Servers etc.)
- model what is "normal" to the given data distribution:
 - models should be accurate for common cases
 - models might contain varying levels of assumption (kNN-based vs. Statistical Process)
- everything which isn't normal w.r.t. to the model is an outlier?



Frequent Itemset Mining

- find frequent patterns in transaction databases
- Frequently co-occurring items in the set of transactions (frequent itemsets): indicate correlations or causalities

applications:

- market-basket analysis
- cross-marketing
- catalog design
- also used as a basis for clustering, classification
- association rule mining: Determine correlations between different itemsets

Examples:

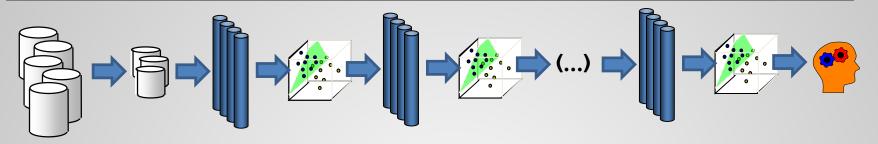
buys(x, "diapers") → buys(x, "beers") [support: 0.5%, confidence: 60%]
major(x, "CS") $^{\land}$ takes(x, "DB") \rightarrow grade(x, "A") [support: 1%, confidence: 75%]

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

other types of Analysis

- Trends and Evolution Analysis
- Sequential Patterns (find re-occurring sequences of events)
- Spatial Data Mining
 - spatial outlier prediction and clustering
 - spatial prediction
 - trajectory analysis
- Graph Mining:
 - link prediction
 - community detection
 - network centrality
- methods for special data types, and applications e.g.,
 - Natural Language Processing
 - Web Mining
 - Bio-KDD
 - . . .

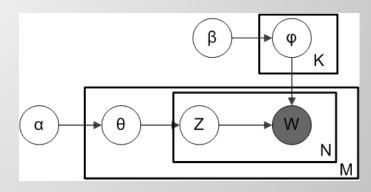
Deep Learning



- often a KDD Process involves several transformation and learning task
- combining multiple learners increases the quality
- ⇒ Deep Architectures
- integrate data transformation and model training (input raw data -> output target variables)
- joint optimization (instead of training each step separately)

Deep Learning

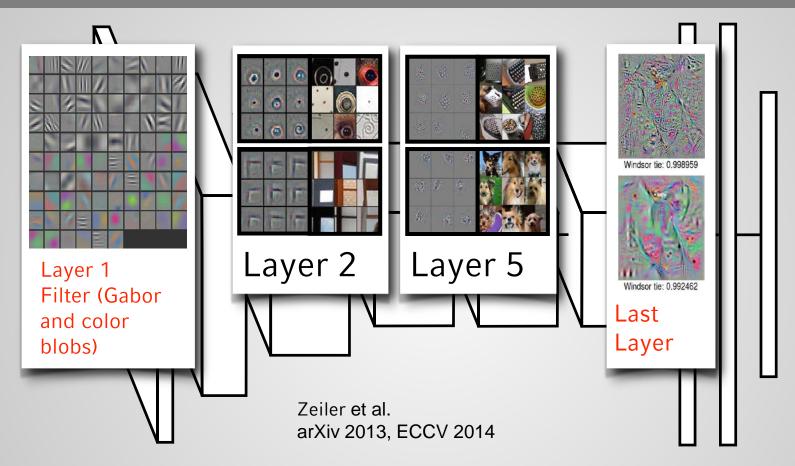
- paradigms for modelling the connection between raw data to abstract results:
- artificial neural networks:
 - connect multiple functions f_n(f_{n-1}(f...(f₁(x)..)) = y
 (each output is the input of the next step)
 - training by minimizing a loss function L(f_n...(f₁(x)..), y)
 - optimization is done by gradient descent
- statistical graphical models
 - generative Bayesian models
 - compute the posterior $p(y|x,\theta)$
 - training by Gibbs Sampling,...



example: Image Recognition

- Conventional Imaging: Imaging Pipeline handcrafted to a the problem (develop function and chain them)
- Current Development: Use Convolutional and Deep Neural Networks on the Raw Pixel data
- Strong performance increase in object recognition
- Applications:
 - search engines and data management
 - autonomous driving and robotics
 - remote sensing
 - surveillance tasks
- Works on excessive amount of data and usually requires a lot of Hardware (e.g. GPU computers) for training

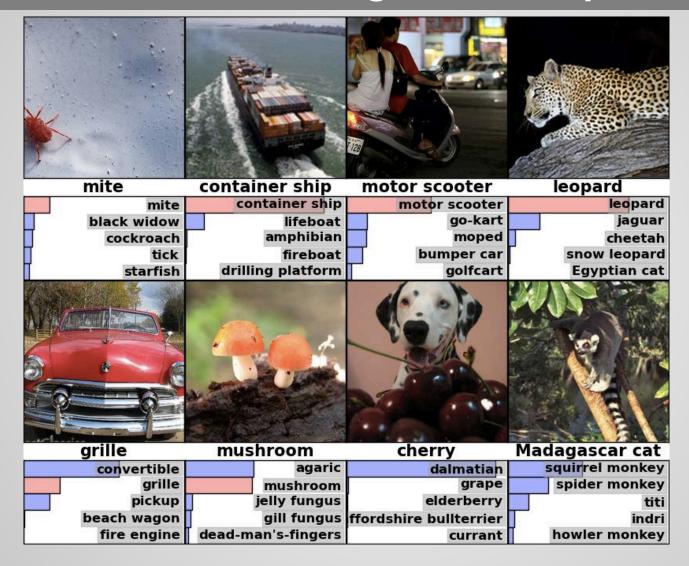
Convolutional NN for Image Recognition



Gabor filter: linear filters used for edge detection with similar orientation representations to the human visual system

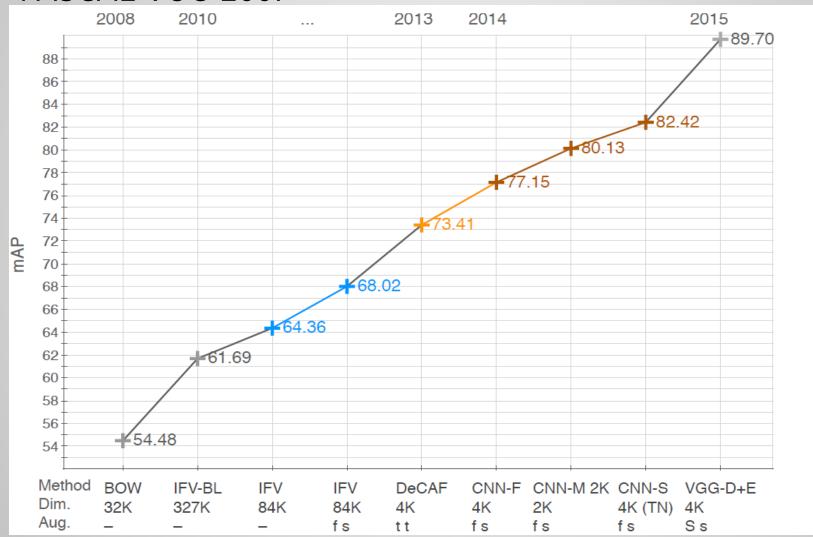
Nguyen et al. arXiv 2014

LeNet5 (Winner ImageNet competition)



Evolution of Performance

PASCAL VOC-2007



other directions in Deep Neural Networks

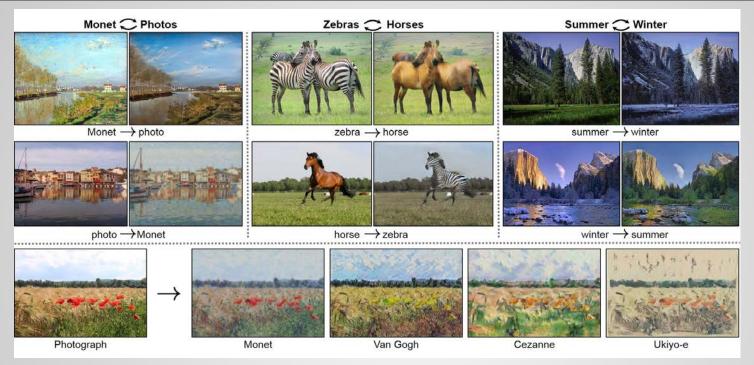
- Recurrent Neural Networks: e.g. long short-term memory
 - models long term dependencies in time series
 - used in speech, text and signal processing
 - -(e.g. automatic translation and chat bots)
- Autoencoders: learn compact representations
- Generative Adversarial Networks (GANs): build data generator for based on observed examples
- Deep Dreams: visualize intermediate results to make image detection better understandable

• ...

example: Generative Adversarial Networks

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

Example: Image Fusion



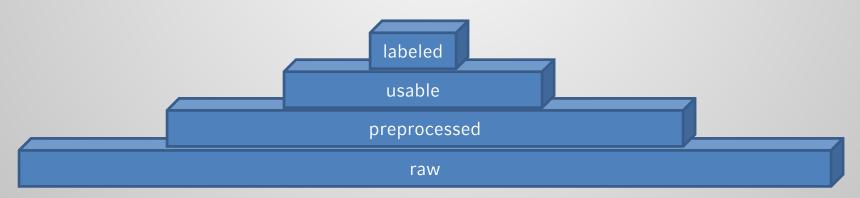
Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.

Artificial Intelligence and Data Analytics

- Al is an extremely broad subject within CS:
- tasks: reasoning, problem solving, knowledge representation, planning, learning, natural language processing, perception, motion and manipulation, social intelligence, creativity, general intelligence
- ⇒ some major overlap to machine learning and data analytics
- for this talk, I will focus on the following aspects:
- analytics: predict unknown values and abstract from given data (What will happen?)
- artificial intelligence: (here: strong focus on planning) find the best strategy to optimize a goal (What should I do?)

The data pyramid

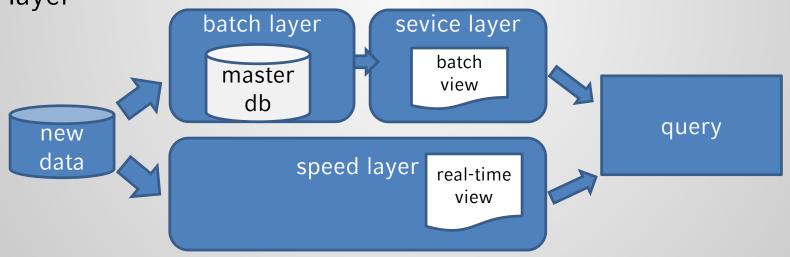
- raw data is often big
- in selection and preprocessing data shrinks
- for complex tasks high-quality data is often still small (e.g. not enough labels, noise, irrelevant, too high resolution)
- ⇒ Big Data systems often found in the first steps of the of the KDD process where scalability and efficiency play a role



The Lambda Architecture

- never change/delete data, store original and transformed data
- distinguish between speed and batch layer
 - speed layer: indexes batch view for interactive access
 - batch layer: breaks down all data to batch views
 - serving layer: high frequency update/latest data

any query can be answered by combination service and speed layer



Course Contents

- Data Science: The Big Picture
- NoSQL Systems
- Hadoop / HDFS / MapReduce
- Apache Spark
- Data Streams & Streaming Methods
- Apache Flink
- Stream Analytics
- Text Data
- High-Dimensional Data
- Graph Data

Literature

- This course is mainly based on a mixture of existing external lectures,
 Surveys, Papers and Reports on Big Data
- There is NO, or better, I'm not aware of a single book or script that is equivalent to this course (and addresses all issues discussed in this course)
- Since Big Data is a quite new and hot topic, standards and basic concepts are quite dynamic => The Web is a very appropriate source of relevant information
- External lectures basically used for this course:
 - Big Data: Donald Kossmann & Nesime Tatbul, Systems Group ETH Zurich - http://www.systems.ethz.ch/node/217
 - Mining of Massive Datasets: Jure Leskovec, Anand Rajaraman, Jeff Ullman, Stanford University - http://www.mmds.org
- Further material will appear at our web page (check for updates during the course / open to further suggestions!)