Ludwig-Maximilians-Universität München Institut für Informatik Prof. Dr. Matthias Schubert Julian Busch, Daniyal Kazempour

Big Data Management and Analytics WS 2017/18

Tutorial 7: Stream Applications and Algorithms

Assignment 7-1 Exponential Histograms

For the given sequence, construct an Exponential Histogram using a window size N = 8 and an error parameter $\epsilon = 1/2$.

Sequence = $\times, \times, \circ, \times, \circ, \circ, \times, \times, \times, \times, \circ, \times, \times, \circ, \times, \times$

Estimate the number of \times within the window at time t = 13 and compare it to the actual number.

Assignment 7-2 *Hoeffding trees*

Predict the risk class of a car driver based on the following attributes:

- Time since getting the driving license (1 2 years, 2 7 years) > 7 years)
- Gender (male, female)
- Residential area (urban, rural)

These are the first 8 examples.

Person	Time since license	Gender	Area	Risk class
1	1 - 2	m	urban	low
2	2 - 7	m	rural	high
3	> 7	f	rural	low
4	1 - 2	f	rural	high
5	> 7	m	rural	high
6	1 - 2	m	rural	high
7	2 - 7	f	urban	low
8	2 - 7	m	urban	low

• Incrementally construct a Hoeffding tree for this example. Use information gain and $\delta = 0.2$ and $N_{\min} = 2$. Use log_2 for the computation of information gain and entropy.

• Compute the value of δ at which the tree would still consist of the leaf only.

Assignment 7-3 Lossy Counting

Given the following excerpt from a data stream S:

Time t	1	2	3	4	5	6	7	8	9	10	11	12
Item e	A	В	С	С	A	C	В	А	С	С	А	C

Perform the Lossy Counting algorithm with the error threshold $\epsilon = 0.25$. Show after every iteration of the algorithm the content of the lookup table D.