Big Data Management and Analytics Assignment 5
(a) Explain each of the terms by providing a short definition

Aggregation: Matching of similar objects to groups and aggregation of the entire group

Compression: Compress received data

Data Reduction: reduce the size of received data

Histograms: Describes a method for approximating frequency distributions of elements in streams
(a) Explain each of the terms by providing a short definition

Load Shedding: Given the case where the data in the stream arrives with such a high velocity that it could overburden the system, some part of the data will be discarded.

Microclusters: Describes a group of similar objects

Sampling: Selecting a subset of the data

Wavelets: Deconstruct a signal in several coefficients
(b) Illustrate how the terms are related to each other.
Given the following input sequence $S = (4,1,2,3,6,1,7,6)$

(a) Perform a Haar Wavelet Transformation on S and determine the Wavelet coefficients

Transform S into a sequence of two-component vectors $((s_1, d_1) \ldots (s_n, d_n))$

where $\forall i \mod 2 = 0$: $
\begin{pmatrix}
 s_i \\
 d_i
\end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_i \\ x_{i+1} \end{pmatrix}$

Vector with current element of the sequence and its successor element

Haar matrix
Given the following input sequence \(S = (4, 1, 2, 3, 6, 1, 7, 6) \)

(a) Perform a Haar Wavelet Transformation on \(S \) and determine the Wavelet coefficients

\[
\begin{align*}
\text{Step1:} \\
\hat{s}_1 &= \left(\frac{4+1}{2}, \frac{2+3}{2}, \frac{6+1}{2}, \frac{7+6}{2} \right) = (2.5, 2.5, 3.5, 6.5) \\
\hat{d}_1 &= \left(\frac{4-1}{2}, \frac{2-3}{2}, \frac{6-1}{2}, \frac{7-6}{2} \right) = (1.5, -0.5, 2.5, 0.5)
\end{align*}
\]
Assignment 5-2

Given the following input sequence $S = (4,1,2,3,6,1,7,6)$

Step1:

$s_1 = \left(\frac{4+1}{2}, \frac{2+3}{2}, \frac{6+1}{2}, \frac{7+6}{2}\right) = (2.5, 2.5, 3.5, 6.5)$

$d_1 = \left(\frac{4-1}{2}, \frac{2-3}{2}, \frac{6-1}{2}, \frac{7-6}{2}\right) = (1.5, -0.5, 2.5, 0.5)$

Step2:

$s_2 = \left(\frac{2.5+2.5}{2}, \frac{3.5+6.5}{2}\right) = (2.5, 5)$

$d_2 = \left(\frac{2.5-2.5}{2}, \frac{3.5-6.5}{2}\right) = (0, -1.5)$
Given the following input sequence $S = (4,1,2,3,6,1,7,6)$

Step2:

$s_2 = \left(\frac{2.5+2.5}{2}, \frac{3.5+6.5}{2} \right) = (2.5, 5)$

$d_2 = \left(\frac{2.5-2.5}{2}, \frac{3.5-6.5}{2} \right) = (0, -1.5)$

Step3:

$s_3 = \left(\frac{2.5+5}{2} \right) = (3.75)$

$d_3 = \left(\frac{2.5-5}{2} \right) = (-1.25)$
Given the following input sequence $S = (4,1,2,3,6,1,7,6)$

<table>
<thead>
<tr>
<th>Mean</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4,1,2,3,6,1,7,6)</td>
<td>(1.5, -0.5, 2.5, 0.5)</td>
</tr>
<tr>
<td>(2.5, 2.5, 3.5, 6.5)</td>
<td>(0, -1.5)</td>
</tr>
<tr>
<td>(2.5, 5)</td>
<td>(-1.25)</td>
</tr>
<tr>
<td>(3.75)</td>
<td>(-)</td>
</tr>
</tbody>
</table>
Given the following input sequence $S = (4,1,2,3,6,1,7,6)$

(b) Reconstruct the original sequence S using the Wavelet coefficients

For the reconstruction of a sequence S we use:

$$
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
s_i \\
d_i \\
\end{pmatrix}
=
\begin{pmatrix}
x'_{i} \\
x'_{i+1} \\
\end{pmatrix}
$$
The wavelet coefficients obtained from (a):
\[\text{DWT}(S) = (3.75, -1.25, 0, -1.5, 1.5, -0.5, 2.5, 0.5) \]

Loss-free reconstruction:
The wavelet coefficients obtained from (a):
\[
\text{DWT}(S) = (3.75, -1.25, 0, -1.5, 1.5, -0.5, 2.5, 0.5)
\]
Loss-free reconstruction:
\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix} \cdot \begin{pmatrix}
3.75 \\
-1.25
\end{pmatrix} = \begin{pmatrix}
2.5 \\
5
\end{pmatrix}
\]
Intuition:
negative sign: start below the base line
positive sign: start above the base line
Take the middle of each (sub)-plateau!
The wavelet coefficients obtained from (a):
\[\text{DWT}(S) = (3.75, -1.25, 0, -1.5, 1.5, -0.5, 2.5, 0.5) \]

Loss-free reconstruction:

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\cdot
\begin{pmatrix}
5 \\
-1.5
\end{pmatrix} =
\begin{pmatrix}
3.5 \\
6.5
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\cdot
\begin{pmatrix}
2.5 \\
0
\end{pmatrix} =
\begin{pmatrix}
2.5 \\
2.5
\end{pmatrix}
\]
The wavelet coefficients obtained from (a):
\[\text{DWT}(S) = (3.75, -1.25, 0, -1.5, 1.5, -0.5, 2.5, 0.5) \]

Loss-free reconstruction:

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
2.5 \\
1.5
\end{pmatrix}
= \begin{pmatrix} 4 \\ 1 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
2.5 \\
-0.5
\end{pmatrix}
= \begin{pmatrix} 2 \\ 3 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
3.5 \\
2.5
\end{pmatrix}
= \begin{pmatrix} 6 \\ 1 \end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\begin{pmatrix}
6.5 \\
0.5
\end{pmatrix}
= \begin{pmatrix} 7 \\ 6 \end{pmatrix}
\]

The original sequence is
\[S = (4, 1, 2, 3, 6, 1, 7, 6) \]
(c) We assume that all coefficients of value \([-0.5,0.5]\) are close to zero

\[DWT(S) = (3.75, -1.25, 0, -1.5, 1.5, -0.5, 2.5, 0.5)\]

Changes to:

\[DWT'(S) = (3.75, -1.25, 0, -1.5, 1.5, 0.5, 2.5, 0)\]

Reconstructing \(S\) with \(DWT'(S)\):

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
3.75 \\
-1.25 \\
\end{pmatrix} = \begin{pmatrix} 2.5 \\
5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
2.5 \\
0 \\
\end{pmatrix} = \begin{pmatrix} 2.5 \\
2.5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
5 \\
1.5 \\
\end{pmatrix} = \begin{pmatrix} 3.5 \\
6.5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
2.5 \\
1.5 \\
\end{pmatrix} = \begin{pmatrix} 4 \\
1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
2.5 \\
0 \\
\end{pmatrix} = \begin{pmatrix} 2.5 \\
2.5 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
3.5 \\
2.5 \\
\end{pmatrix} = \begin{pmatrix} 6 \\
1 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1 \\
\end{pmatrix}
\cdot
\begin{pmatrix}
6.5 \\
0 \\
\end{pmatrix} = \begin{pmatrix} 6.5 \\
6.5 \\
\end{pmatrix}
\]
(c) We assume that all coefficients of value [-0.5, 0.5] are close to zero

DWT(S) = (3.75, -1.25, 0, -1.5, 1.5, -0.5, 2.5, 0.5)

Changes to:

DWT'(S) = (3.75, -1.25, 0, -1.5, 1.5, 0, 2.5, 0)

Using DWT'(S) leads to a loss afflicted reconstruction with:

S = (4, 1, 2, 3, 6, 1, 7, 6)
S' = (4, 1, 2.5, 2.5, 6, 1, 6.5, 6.5)

Now take each residue from S, S' and compute their difference and sum up the differences to the total approximation error:

\[
\varepsilon_{err}(S, S') = \sum_{i=0}^{\lfloor |S|/2 \rfloor - 1} |S(i) - S'(i)|
\]
(c) We assume that all coefficients of value [-0.5,0.5] are close to zero
S = (4,1,2,3,6,1,7,6)
S' = (4,1,2.5,2.5,6,1,6.5,6.5)

Now take each residue from S,S' and compute their difference and sum up the differences to the total approximation error:

$$\varepsilon_{err}(S,S') = \sum_{i=0}^{|S|-1} |S(i) - S'(i)|$$

$$\varepsilon_{err}(S,S') = |4 - 4| + |1 - 1| + |2 - 2.5| + |3 - 2.5| + |6 - 6| + |1 - 1| + |7 - 6.5| + |6 - 6.5| = 2$$
(a) Compute the reduced representation of S using PAA (box size M=4)

Hint: A PAA approximates a time series X of length N with a vector $ar{X} = (\bar{x}_1, ..., \bar{x}_M)$ of arbitrary length $M \leq N$, where for each \bar{x}_i holds:

$$\bar{x}_i = \frac{M}{N} \sum_{j=\frac{N}{M}(i-1)+1}^{\frac{N}{M}i} x_j$$
(a) Compute the reduced representation of S using PAA (box size $M=4$)

position $p = (1, 2, 3, 4, 5, 6, 7, 8)$

Initial sequence $S = (4, 1, 2, 3, 6, 1, 7, 6)$

\[
\bar{x}_1 = \frac{4}{8} \sum_{j=\frac{8}{4}(1-1)+1=1}^{\frac{8}{4}=2} x_j = \frac{4 + 1}{2} = 2.5
\]

\[
\bar{x}_2 = \frac{4}{8} \sum_{j=\frac{8}{4}(2-1)+1=3}^{\frac{8}{4}=4} x_j = \frac{2 + 3}{2} = 2.5
\]
(a) Compute the reduced representation of S using PAA (box size M=4)
position $p = (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8)$
Initial sequence $S = (4 ,1 ,2 ,3 ,6 ,1 ,7 ,6)$

$$\bar{x}_3 = \frac{4}{8} \sum_{j=\frac{8}{4}(3-1)+1=5}^{8} x_j = \frac{(6 + 1)}{2} = 3.5$$

$$\bar{x}_4 = \frac{4}{8} \sum_{j=\frac{8}{4}(4-1)+1=7}^{8} x_j = \frac{(7 + 6)}{2} = 6.5$$
(a) Compute the reduced representation of S using PAA (box size M=4)

$$\text{PAA}(S) = (2.5, 2.5, 3.5, 6.5)$$

The red line looks somehow familiar…
(b) Convince yourself that PAA and DWT (using Haar Wavelets as basis function!) are equivalent!
(b) Convince yourself that PAA and DWT (using Haar Wavelets as basis function!) are equivalent!

Given the case that the number of coefficients of the DWT is a power of two it is always possible to convert between the representations (PAA and Haar)

Source:
(b) Convince yourself that PAA and DWT (using Haar Wavelets as basis function!) are equivalent!

<table>
<thead>
<tr>
<th>Mean</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4,1,2,3,6,1,7,6)</td>
<td>(-)</td>
</tr>
<tr>
<td>(2.5, 2.5, 3.5, 6.5)</td>
<td>(1.5, -0.5, 2.5, 0.5)</td>
</tr>
<tr>
<td>(2.5, 5)</td>
<td>(0, -1.5)</td>
</tr>
<tr>
<td>(3.75)</td>
<td>(-1.25)</td>
</tr>
</tbody>
</table>
Given a data stream of size N. Randomly select $k \leq N$ elements from the stream. Here k represents the size of the reservoir.

(a) Setting $k = 1, N = 2$. The first element is in the reservoir, the second is not. What is the probability of both elements to be in the reservoir?

- $k = 1$, $N = 2$
- To keep the new item and remove the old one: $p_{\text{new}} = \frac{1}{i} = \frac{1}{2}$
- To keep the old item A and ignore the new one: $p_{\text{old}} = 1 - \frac{1}{i} = \frac{1}{2}$
Given a data stream of size N. Randomly select $k \leq N$ elements from the stream. Here k represents the size of the reservoir.

(b) Setting $k = 1, N = 3$. What is now the probability for each of the elements to be in the reservoir?

$$p_{new} = \frac{1}{i} = \frac{1}{3}$$

$$p_{old} = \frac{1}{2} \left(1 - \frac{1}{3}\right) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3}$$
Given a data stream of size N. Randomly select $k \leq N$ elements from the stream. Here k represents the size of the reservoir.

(c) Setting $k = 1$. What is the probability for any given N?

$$p_{old} = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{i-2}{i-1} \cdot \frac{i-1}{i} = \frac{1}{i}$$
Given a data stream of size N. Randomly select $k \leq N$ elements from the stream. Here k represents the size of the reservoir.

(d) What is the probability for an arbitrary reservoir size k and an arbitrary stream size N?

$$p_{\text{new}} = \frac{k}{i}$$

$$p_{\text{old}} = \frac{k}{k+1} \cdot \frac{k+1}{k+2} \cdot \frac{k+2}{k+3} \cdots \frac{k+i-k-1}{i} = \frac{k}{i}$$