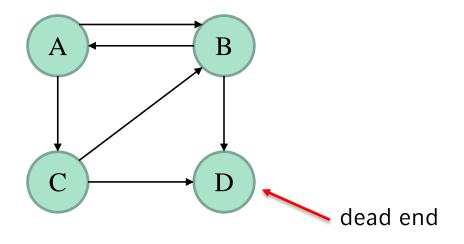


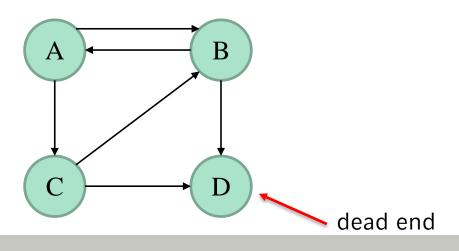
Big Data Management and Analytics Assignment 11

- a) Explain how the PageRank algorithm avoids to get stuck in a "dead end".
- What is a "dead end"?
- → Pages which do not have any outgoing link

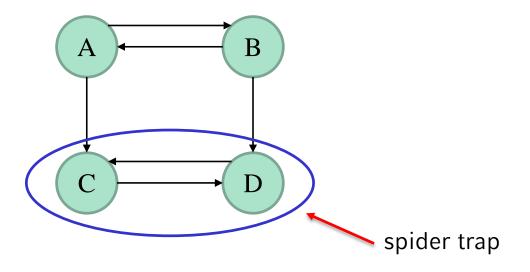


Assignment 11-1

- a) Explain how the PageRank algorithm avoids to get stuck in a "dead end".
- PageRank avoids getting trapped in such "dead ends" by randomly surfing on any other page → Teleport
- Let n be the number of pages in the graph. The probability to surf on a specific page is 1/n
- In the graph below, being trapped in D, the next pages A,B,C or D itself can be visited with a probability of 1/4

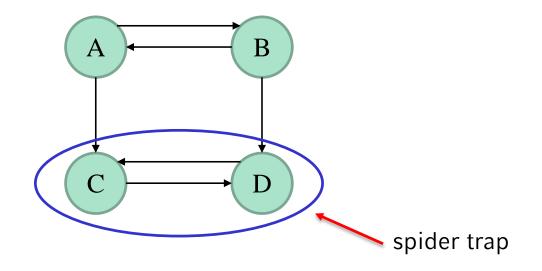


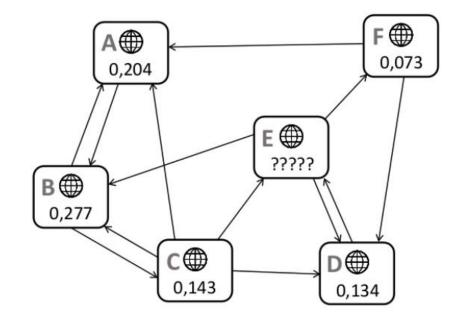
- a) Explain how the PageRank algorithm avoids to get stuck in a "dead end".
- What is a "spider trap"?
- \rightarrow All outgoing links of a group of pages are **within** the group

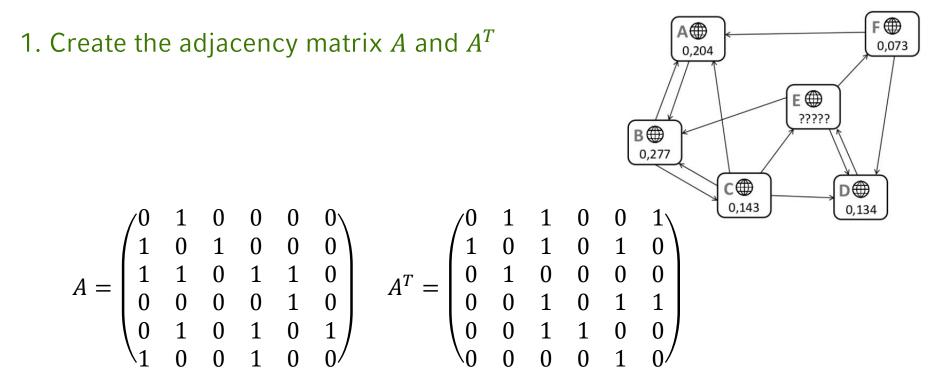


Assignment 11-1

- a) Explain how the PageRank algorithm avoids to get stuck in a "dead end".
- How can a spider trap being avoided?
- \rightarrow Follow a link with a probability of β
- → Teleporting randomly to any page is done with a probability of (1β)







- b) Given the graph below, compute the Google Matrix with $\beta = 0.85$
- 2. Create a matrix M by norming A^T

$$A^{T} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 1 & 0 & \frac{1}{4} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & \frac{1}{4} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

- b) Given the graph below, compute the Google Matrix with $\beta = 0.85$
- 2. Create a matrix M by norming A^T

$$M = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 1 & 0 & \frac{1}{4} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & \frac{1}{4} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

- This matrix is alread real, non-negative and its columns fulfill the stochastic property
- In case of a dead end these properties would not hold
- \rightarrow a column would be zero \rightarrow All values of that column would be set to $^{1}/_{6}$

3. Compute the Google matrix $G = \beta \cdot M + \frac{1-\beta}{n} \cdot \mathbf{1}$

$$0.85 \cdot \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 1 & 0 & \frac{1}{4} & 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & \frac{1}{4} & 1 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} & 0 \end{pmatrix} + (1 - 0.85) \begin{pmatrix} \frac{1}{6} & \cdots & \frac{1}{6} \\ \vdots & \ddots & \vdots \\ \frac{1}{6} & \cdots & \frac{1}{6} \end{pmatrix} =$$

3. Compute the Google matrix $G = \beta \cdot M + \frac{1-\beta}{n} \cdot \mathbf{1}$

$$= \frac{1}{60} \cdot \begin{pmatrix} 0 & 25.5 & 12.75 & 0 & 0 & 25.5 \\ 51 & 0 & 12.75 & 0 & 17 & 0 \\ 0 & 25.5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 12.75 & 0 & 17 & 25.5 \\ 0 & 0 & 12.75 & 51 & 0 & 0 \\ 0 & 0 & 0 & 0 & 17 & 0 \end{pmatrix} + \frac{1}{60} \begin{pmatrix} 1.5 & \cdots & 1.5 \\ \vdots & \ddots & \vdots \\ 1.5 & \cdots & 1.5 \end{pmatrix} =$$

3. Compute the Google matrix $G = \beta \cdot M + \frac{1-\beta}{n} \cdot \mathbf{1}$

$$= \frac{1}{60} \cdot \begin{pmatrix} 1.5 & 27 & 14.25 & 1.5 & 1.5 & 27 \\ 52.5 & 1.5 & 14.25 & 1.5 & 18.5 & 1.5 \\ 1.5 & 27 & 1.5 & 1.5 & 1.5 & 1.5 \\ 1.5 & 1.5 & 14.25 & 1.5 & 18.5 & 27 \\ 1.5 & 1.5 & 14.25 & 52.5 & 1.5 & 1.5 \\ 1.5 & 1.5 & 1.5 & 1.5 & 18.5 & 1.5 \end{pmatrix}$$

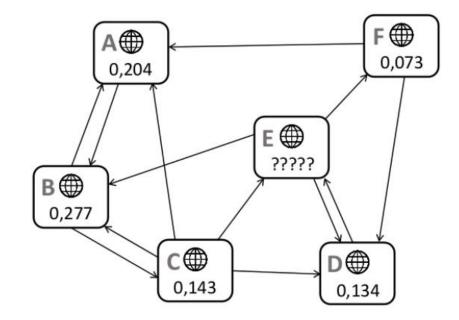
Assignment 11-1

- c) How can the actual PageRank values be computed by using the Google Matrix?
- The Google matrix has the stochastic property
 → There exists an eigenvector of *G* with the eigenvalue 1
- Looking at the eigenvalue problem $G \cdot x = x$, vector x is a stochastic vector which consists of the PageRank values
- For getting the eigenvector x_i to the corresponding eigenvalue λ_i we can solve the following equation system: $(G - \lambda_i Ex) = 0$
- In our case $\lambda_i = 1$, thus we need to compute (G Ex) = 0in order to get the eigenvector

- c) How can the actual PageRank values be computed by using the Google Matrix?
- Solve the following equation system (G Ex) = 0:

/-0.975	0.450	0.238	0.025	0.025	0.450	0.000
0.000	-0.571	0.451	0.047	0.331	0.429	0.000
0.000	0.000	-0.605	0.064	0.293	0.383	0.000
0.000	0.000	0.000	-0.943	0.462	0.662	0.000
0.000	0.000	0.000	0.000	0.376	-0.873	0.000
\ 0.000	0.000	0.000	0.000	0.000	0.000	0.000/

d) Given the graph as seen below, compute the missing PageRank value of node E by using the PageRank equation



 d) Given the graph as seen below, compute the missing PageRank value of node E by using the PageRank equation

$$PR_E = \frac{1-\beta}{n} + \beta \sum_{i \to E} \frac{PR_i}{d_i}$$

$$PR_E = \frac{0.15}{6} + 0.85(\frac{0.143}{4} + 0.134)$$

 $PR_{E} = 0.169$

- d) Given the graph as seen below, compute the missing PageRank value of node E by using the PageRank equation
- Alternatively it can also be computed by using the equation system in (c):

	А	В	С	D	Е	F	
А	$\begin{pmatrix} -0.975 \\ 0.000 \end{pmatrix}$	0.450	0.238	0.025	0.025	0.450	0.000
В	0.000	-0.571	0.451	0.047	0.331	0.429	0.000
С	0.000	0.000	-0.605	0.064	0.293	0.383	0.000
D	0.000	0.000	0.000	-0.943	0.462	0.662	0.000
Е	0.000	0.000	0.000	0.000	0.376	-0.873	0.000
F	0.000	0.000	0.000	0.000	0.000	0.000	0.000/

$$0.376 \cdot PR_E + (-0.873) \cdot PR_F = 0$$

$$0.376 \cdot PR_E + (-0.873) \cdot 0.073 = 0$$

$$PR_E = \frac{0.873 - 0.073}{0.376}$$

$$PR_E = 0.169$$