Big Data Management and Analytics Assignment 10
Assignment 10-2

• Find the CUR-decomposition of the matrix, when we pick two „random“ rows and columns. The columns we pick are Alien and StarWars and the rows are the ones of Jack and Jill.

• From the lecture (Ch.7, Sl. 46) we know that the scaled column for Alien is: [1.54, 4.63, 6.17, 7.72, 0, 0, 0]ᵀ. The second column for Star Wars is the same. We thus define C as follows:

\[
C = \begin{pmatrix}
1.54 & 1.54 \\
4.63 & 4.63 \\
6.17 & 6.17 \\
7.72 & 7.72 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
\]
The unscaled rows for R are:

\[
R_{\text{unscaled}} = \begin{pmatrix}
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 4 & 4
\end{pmatrix}
\]

The probability \(p_i \) with which we select row \(i \) is given by:

\[
p_i = \frac{\sum_j m_{i,j}^2}{\|M\|_F^2}
\]

The square of the Frobenius norm for M is \(\|M\|_F^2 = 243 \)

The square of the Frobenius norm for Jack is: \(\text{row}_{\text{jack}} = \sum_j m_{3,j}^2 = 5^2 + 5^2 + 5^2 = 75 \)

The square of the Frobenius norm for Jill is: \(\text{row}_{\text{jill}} = \sum_j m_{4,j}^2 = 4^2 + 4^2 = 32 \)

The probability for selecting Jack is: \(p_{\text{jack}} = 75/243 = 0.309 \)

The probability for selecting Jill is: \(p_{\text{jill}} = 32/243 = 0.132 \)
• The unscaled rows for R are:

\[R_{unscaled} = \begin{pmatrix} 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \end{pmatrix} \]

• Scaling the row for Jack, we divide all its row entries by:

\[\sqrt{r \cdot p_{jack}} = \sqrt{2 \cdot 0.309} = 0.786 \]

• Scaling the row for Jill, we divide all its row entries by:

\[\sqrt{r \cdot p_{jill}} = \sqrt{2 \cdot 0.132} = 0.514 \]

• This yields the scaled matrix R:

\[R = \begin{pmatrix} 6.36 & 6.36 & 6.36 & 0 & 0 \\ 0 & 0 & 0 & 7.78 & 7.78 \end{pmatrix} \]
• Now that we have C and R, we construct the middle matrix U:

• First construct a matrix W from the intersection of the selected rows from R and the columns from C:

\[W = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix} \]
• $W = \begin{pmatrix} 5 & 5 \\ 0 & 0 \end{pmatrix}$

• Take the SVD from W:

\[
W = \mathbf{X} \Sigma \mathbf{Y}^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{50} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}
\]

• Taking the Moore-Penrose pseudoinverse of Σ leads to:

\[
\Sigma^+ = \begin{pmatrix} 1/\sqrt{50} & 0 \\ 0 & 0 \end{pmatrix}
\]
Now we can compute \(U = Y(\Sigma^+)^2 X^T \)

\[
U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \left(\begin{array}{cc} \frac{1}{\sqrt{50}} & 0 \\ 0 & 0 \end{array} \right)^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{50} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{50\sqrt{2}} \\ \frac{1}{50\sqrt{2}} \end{pmatrix}
\]