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Principal Component Analysis (PCA): 
A simple example 1/3

• Consider the grades of students in Physics and Statistics.
• If we want to compare among the students, which grade should be more 

discriminative? Statistics or Physics?

2

Physics since the variation along 
that axis is larger.

Based on:
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Principal Component Analysis (PCA): 
A simple example 2/3

• Suppose now the plot looks as below. 
• What is the best way to compare students now?

3

We should take linear 
combination of the two grades to 
get the best results. 

Here the direction of maximum 
variance is clear.

In general  PCA

Based on: 
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Principal Component Analysis (PCA): 
A simple example 3/3

• PCA returns two principal components
– The first gives the direction of the maximum spread of the data. 
– The second gives the direction of maximum spread perpendicular to the first 

direction

4

Based on: 
http://astrostatistics.psu.edu/su09/lecturenotes/pca.html
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Intuition

• The data starts off with some amount of variance/information in it. We would 
like to choose a direction u so that if we were to approximate the data as lying 
in the direction/subspace corresponding to u, as much as possible of this 
variance is still retained.

5

Initial data Direction 1 Direction 2

Idea: Choose the direction that maximizes the variance of the projected data
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Principal Component Analysis (PCA)

• PCA computes the most meaningful basis to re-express a noisy,
garbled data set.

• Think of PCA as choosing a new coordinate system for the data, the principal 
components being the unit vectors along the axes

• PCA asks: Is there another basis, which is a linear combination of the original 
basis, that best expresses our dataset?

• General form: PX=Y
where P is a linear transformation, X is the original dataset and Y the re-

representation of this dataset.
– P is a matrix that transforms X into Y
– Geometrically, P is a rotation and a stretch which again transforms X into Y
– The eigenvectors are the rotations to the new axes
– The eigenvalues are the amount of stretching that needs to be done

• The p’s are the principal components
– Directions with the largest variance … those are the most important, most principal.
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Principal Component Analysis (PCA)

Idea: Rotate the data space in a way that the principal components are placed 
along the main axis of the data space
=> Variance analysis based on principal components

• Rotate the data space in a way that the direction with the largest variance is placed on 
an axis of the data space

• Rotation is equivalent to a basis transformation by an orthonormal basis
– Mapping is equal of angle and preserves distances:

• B is built from the largest variant direction which is orthogonal to all previously selected 
vectors in B.
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What do we need to know for PCA

• Basics of statistical measures: 
– variance 
– covariance

• Basics of linear algebra:
– Matrices
– Vector space
– Basis
– Eigenvectors, eigenvalues
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Variance

• A measure of the spread of the data

• Variance refers to a single dimension, e.g., height

9
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Covariance

• A measure of how much two random variables vary together

• What the values mean
– Positive values: both dimensions move together (increase or decrease)
– Negative values: while one dimension increases the other decreases
– Zero value: the dimensions are independent of each other.
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Covariance matrix

• Describes the variance of all features and the pairwise 
correlations between them

• Properties:
– For d-dimensional data, dxd covariance matrix
– symmetric matrix as COV(X,Y)=COV(Y,X) 
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Data matrix

• Given n vectors vi ∈ IRd, n×d matrix 

is called data matrix

• Centroid/mean vector of D:

• Centered data matrix:
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Covariance matrix and centered data matrix

• The covariance matrix can be expressed in terms of the centered 
data matrix as follows:
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Vector/ Matrix basics

• Inner (dot) product of vectors x, y:

• Outer product of vectors x, y: 

• Matrix multiplication:

• Length of a vector
– Unit vector: if ||a||=1
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Eigenvectors and eigenvalues

• Let D be d×d square matrix.
• A non zero vector vi is called an eigenvector of D if and only if  

there exists a scalar λi such that: Dvi=λivi.
– λi is called an eigenvalue of D.

• How to find the eigenvalues/eigenvectors of D?
– By solving the equation: det(D-λIdxd)=0 we get the eigenvalues

o Idxd is the identity matrix
– For each eigenvalue λi, we find  its eigenvector by solving (D-λi)vi=0
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Eigenvectors decomposition

• Let D be dxd square matrix.
• Eigenvalue decomposition of the data matrix

• The columns of V are the eigenvectors of D
• The diagonal elements of Λ are the eigenvalues of D

18
















=Λ

Λ=

d

TVVD

λ

λ







0

01

The eigenvectors are linearly independent

Every eigenvector is a unit vector

The corresponding eigenvalues

( ) 10,,,
1

1 ==∀= ∀
=≠ i

d

i
jijid vundvvmitvvV 

Big Data Management and Analytics



DATABASE
SYSTEMS
GROUP

PCA steps

Feature reduction using PCA

1. Compute the covariance matrix Σ

2. Compute the eigenvalues and the corresponding eigenvectors of Σ

3. Select the k biggest eigenvalues and  their eigenvectors (V‘)

4. The k selected eigenvectors represent an orthogonal basis

5. Transform the original n × d data matrix D with the d × k basis V‘:
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Example of transformation

• Original

• Transformed data

21

Eigenvectors

In the rotated coordinate system

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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Percentage of variance explained by PCA

• Let k be the number of top eigenvalues out of d (d is the number 
of dimensions in our dataset)

• The percentage of variance in the dataset explained by the k 
selected eigenvalues is:

• Similarly, you can find the variance explained by each principal 
component

• Rule of thumb: keep enough to explain 85% of the variation

22

∑𝑖𝑖=1𝑘𝑘 𝜆𝜆𝑖𝑖
∑𝑖𝑖=1𝑑𝑑 𝜆𝜆𝑖𝑖
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PCA results interpretation

• Example: iris dataset  (d=4), results from R
• 4 principal components 
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Computing PCA via Power Iteration

Problem:
• Computing the eigenvalues with standard algorithms is often  

expensive (many algorithm are well-known) 
• Standard methods often in involve matric inversions ( O(n3))
• For large matrices more efficient methods are required:
• Most prominent is the power iterations method ( O(n2))
Intuition: Multiplying a matrix with itself increases the strongest 
direction relative to the other direction.
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Power Iterations general idea

• given: data n×d matrix X and the corresponding covariance matrix 
Σ=(X-µ(X)T(X-µ(X)) where µ(X) is the mean vector of X.

• consider the eigenvalue decomposition of Σ = VT Λ V where
𝑉𝑉 = 𝑣𝑣1, . . , 𝑣𝑣𝑑𝑑 : is the columnwise orthonormal eigenvector basis 

Λ =
𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝑑𝑑

: is the diagonal eigenvalue matrix 

Note: Σ𝑡𝑡 = 𝑉𝑉𝑇𝑇Λ𝑉𝑉 𝑡𝑡 = 𝑉𝑉𝑇𝑇Λ𝑉𝑉 ⋅ 𝑉𝑉𝑇𝑇Λ𝑉𝑉 � … � 𝑉𝑉𝑇𝑇 Λ𝑉𝑉= 𝑉𝑉𝑇𝑇Λ𝑡𝑡𝑉𝑉

=𝑉𝑉𝑇𝑇
λ1𝑡𝑡 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ λ𝑑𝑑𝑡𝑡

V
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What is the ith power of a diagonal matrix ?

• if PCA is well-defined all λ>= 0
• taking the ith power: All values λ >1 increase with the power

and all λ values < 0 decrease exponentially fast.
• When normalizing the λ by ∑𝑖𝑖=1𝑑𝑑 𝜆𝜆𝑖𝑖 , we observe the following:

for λi≠λj and 𝑡𝑡 → ∞ : ∃𝜆𝜆𝑖𝑖∗: 𝜆𝜆𝑖𝑖∗
𝑡𝑡

∑𝑖𝑖=1
𝑑𝑑 𝜆𝜆𝑖𝑖

𝑡𝑡→1 𝑎𝑎𝑎𝑎𝑎𝑎 ∀j≠ 𝑖𝑖 ∗:
𝜆𝜆𝑗𝑗
𝑡𝑡

∑𝑖𝑖=1
𝑑𝑑 𝜆𝜆𝑖𝑖

𝑡𝑡→0

• under normalization over all diagonal entries, only one 
component remains.

• Thus: the rank of Σ𝑡𝑡 converges to 1 and the only component 
remaining is the strongest eigenvector.
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Determining the Strongest Eigenvalue

The following algorithm computes the strongest eigenvalue of matrix M:
Input: d×d data matrix M
x0 = random unit vector

while xi/||xi||- xi-1/||xi-1||> ε do
xi = Mix0

i=i+1

return xi/||xi||

Why does this work?

𝑀𝑀𝑡𝑡𝑥𝑥 = 𝑣𝑣1 , . . ,𝑣𝑣𝑑𝑑
0 . . 0
. . 𝜆𝜆𝑗𝑗𝑡𝑡 . .
0 . . 0

𝑣𝑣1
:
𝑣𝑣𝑑𝑑

𝑥𝑥 = 𝑣𝑣1 , . . ,𝑣𝑣𝑑𝑑
0 . . 0
. . 𝜆𝜆𝑗𝑗𝑡𝑡 . .
0 . . 0

𝑣𝑣1, 𝑥𝑥
:

𝑣𝑣𝑑𝑑 , 𝑥𝑥

=[𝑣𝑣1, . . ,𝑣𝑣𝑑𝑑]
0
𝜆𝜆𝑗𝑗𝑡𝑡

0
𝑣𝑣𝑗𝑗 ,𝑥𝑥 =

𝑣𝑣1,1 � 0+. . +𝑣𝑣1,𝑗𝑗 � 𝜆𝜆𝑗𝑗𝑡𝑡 𝑣𝑣𝑗𝑗 , 𝑥𝑥 + 𝑣𝑣1,𝑑𝑑 � 0
:

𝑣𝑣𝑑𝑑,1 � 0+. . +𝑣𝑣𝑑𝑑,𝑗𝑗 � 𝜆𝜆𝑗𝑗𝑡𝑡 𝑣𝑣𝑗𝑗 , 𝑥𝑥 + 𝑣𝑣𝑑𝑑,𝑑𝑑 � 0
= 𝑣𝑣𝑗𝑗� 𝜆𝜆𝑗𝑗𝑡𝑡 𝑣𝑣𝑗𝑗 , 𝑥𝑥
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Power Iterations: the complete method

• we now have a method to determine the strongest eigenvalue
• to compute the k-strongest eigenvalues we proceed as follows:
For i=1 to k:

determine the strongest eigenvalue v_i

reproject data X to the space being orthogonal to v_i: x’ 
= x-v_i<v_i,x>

output the v_i

• explanation for the reprojection:

• if there are two equally strong eigenvalues λi =λj then the 
algorithm return an arbitrary vector from span(vi,vj)

• for λi ≈ λj : the algorithm converges slower

Big Data Management and Analytics 28
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Conclusion

• PCA is an important method for feature reduction
• general and complete for eigenvalue decomposition are often 

inefficient(compute the characteristic polynomial, using matrix 
inversion etc.)

• Power iterations are linear in the size of the matrix, i.e. quadratic 
in the dimension d.

• Power iterations compute only the k strongest eigenvalues but 
not all (stop when k strongest v are found)

• rely only on matrix multiplications
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