Chapter 7:

Text Processing & High Dimensional Data

Introduction

Recap Data Science Intro:

... Data contains value and knowledge ...

- ... but to extract the knowledge data needs to be
- Stored
- Managed

- up to now, we have
- learned about this.

Introduction

Recap Data Science Intro:

... Data contains value and knowledge ...

- ... but to extract the knowledge data needs to be
- Stored
- Managed
- And ANALYZED

- up to now, we have
- learned about this.
- Now, we will focus on this part
- → Big Data Analytics ≈ Data Mining ≈ Predictive Analytics ≈ Data Science

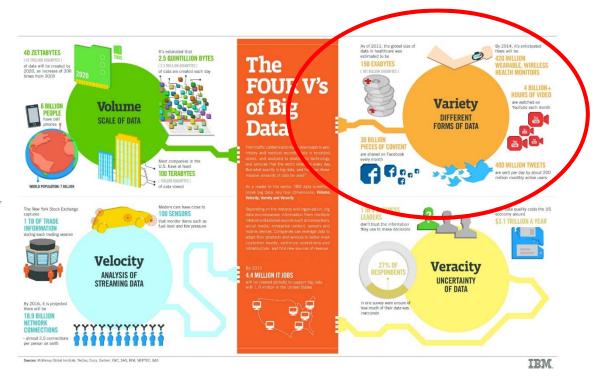
Introduction

Recap Data Science Intro:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Variety: different forms of data

- Unstructured, e.g. data in form of text
- Potentially high dimensional data



Text Processing & High-Dimensional Data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High-Dimensional Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Text Processing – Motivation

Given: Set of documents

Searching for patterns in large sets of document objects

→ Analysing the similarity of objects

In many applications the documents are not identical, yet they share large portions of their text:

- Plagiarism
- Mirror Pages
- Articles from the same source

Problems in the field of Text Mining:

- Stop words (e.g. for, the, is, which ,...)
- Identify word stem
- High dimensional features (d > 10'000)
- Terms are not equally relevant within a document
- The frequency of terms are often $h_i = 0 \rightarrow \text{very sparse feature space}$
- → We will focus on character-level similarity, not , similar meaning'

Text Processing – Motivation (Common approaches - for details see KDD I)

How to handle relevancy of a term?

TF-IDF (Term Frequency * Inverse Document Frequency)

- Emprical probability of term t in document d: $TF(t,d) = \frac{n(t,d)}{max_{w \in d}n(w,d)}$ frequency n(t,d) := number of occurrences of term (word) t in document d
- Inverse probability of t regarding all documents: $\mathbf{IDF}(\mathbf{t}) = \frac{|DB|}{|\{d|d \in DB \land t \in d\}|}$
- Feature vector is given by: $r(d) = (TF(t_1, d) * IDF(t_1), ..., TF(t_n, d) * IDF(t_n)$

How to handle sparsity?

Term frequency often 0 => diversity of mutual Euclidean distances quite low → other distance measures required:

- Jaccard Coefficient: $d_{Jaccard}(D_1, D_2) = \frac{|D_1 \cap D_2|}{|D_1 \cup D_2|}$ (Documents \rightarrow set of terms)
- Cosinus Coefficient: $d_{Cosinus}(D_1, D_2) = \frac{\langle D_1, D_2 \rangle}{\|D_1\| * \|D_2\|}$ (useful for high-dim. data)

Shingling of Documents

General Idea: construct a set of short strings that appear within a document

K- shingles

Definition: A *k*-shingle is any substring of length *k* found within the document.

 \rightarrow Associate with each document the set of k-shingles that appear n times within that document

Hashing Shingles:

Idea: pick hash function that maps strings of length k to some number of buckets and treat the resulting bucket number as the shingle
 → set representing document is then set of integers

Similarity-Preserving Summaries of Sets

Problem: Sets of shingles are large

→ replace large sets by much smaller representations called , signatures'

Matrix representation of Sets

Characteristic matrix:

- columns correspond to the sets (documents)
- rows correspond to elements of the universal set from which elements (shingles) of the columns are drawn documents

Example:

- universal set: {A,B,C,D,E},
- $S1 = \{A,D\}, S2 = \{C\}, S3 = \{B,D,E\}, S4 = \{A,C,D\}$

shingles

Element	S1	S2	S3	S4
Α	1	0	0	1
В	0	0	1	0
С	0	1	0	1
D	1	0	1	1
Е	0	0	1	0

Similarity-Preserving Summaries of Sets

Minhashing

Idea: To minhash a set represented by a column c_i of the characterisitic matrix, pick a permutation of the rows. The value of the minhash is the number of the first row, in the permutated order, with $h(c_i) = 1$

Example:

Suppose the order of rows ,beadc'

- h(S1) = A
- h(S2) = C
- h(S3) = B
- h(S4) = A

Element	S1	S2	S3	S4
В	0	0	1	0
Е	0	0	1	0
Α	1	0	0	1
D	1	0	1	1
С	0	1	0	1

Similarity-Preserving Summaries of Sets

Minhashing and Jaccard Similarity

The probability that the minhash function for a random permutation of rows produces the same value for two sets equals the Jaccard similarity of those sets

Three different classes of similarity between sets (documents)

- Type X rows have 1 in both cols
- Type Y rows have 1 in one of the columns
- Type Z rows have 0 in both rows

Example

Considering the cols of S1 and S3:

The probability that h(S1) = h(S3) is given by:

$$SIM(S1, S3) = \frac{x}{(x+y)} = \frac{1}{4}$$

(Note that x is the size of $S1 \cap S2$ and (x+y) is the size of $S1 \cup S2$)

Element	S1	S2	S 3	S4
В	0	0	1	0
E	0	0	1	0
Α	1	0	0	1
D	1	0	1	1
С	0	1	0	1

Similarity-Preserving Summaries of Sets

Minhash Signatures

- Pick a random number *n* of permutations of the rows
- Vector $[h_1(S), h_2(S), ..., h_n(S)]$ represents the minhash signature for S
- Put the specific vectors together in a matrix, forms the *signature matrix*
- Note that the $signature\ matrix$ has the same number of columns as input matrix M but only n rows

How to compute minhash signatures:

- 1. Compute $h_1(S), h_2(S), ..., h_n(S)$
- 2. For each row r: For each column c do the following:
 - (a) if c has 0 in row r, do nothing
 - (b) if c has 1 in row r then for each i=1,2,...,n set $SIG(i,c)=\min(SIG(i,c),h_i(r))$
- → Signature matrix allows to estimate the Jaccard similarities of the underlying sets!

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

Suppose two hash functions : $h_1(x) = (x + 1) \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S 1	S2	S 3	S4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

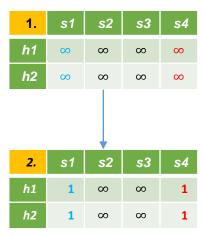
1st row

Check Sig for S1 and S4:

$$SIG(i,c) = \min(SIG(i,c), h_i(r))$$

S1:
$$\min(\infty, 1) = 1$$

 $\min(\infty, 1) = 1$
S4: $\min(\infty, 1) = 1$
 $\min(\infty, 1) = 1$



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S2	S 3	S4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

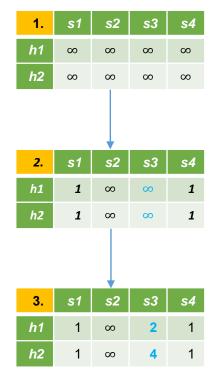
2nd row

Check Sig for S3:

$$SIG(i,c) = \min(SIG(i,c), h_i(r))$$

S3:
$$min(\infty, 2) = 2$$

 $min(\infty, 4) = 4$



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S2	S3	S4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

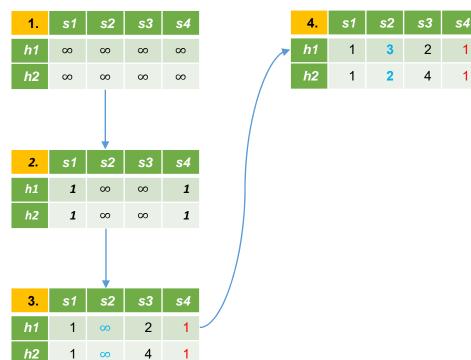
3rd row

Check Sig for S2 and S4:

$$SIG(i,c) = \min(SIG(i,c), h_i(r))$$

S2:
$$\min(\infty, 3) = 3$$

 $\min(\infty, 2) = 2$
S4: $\min(1,3) = 1$
 $\min(1,2) = 1$



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

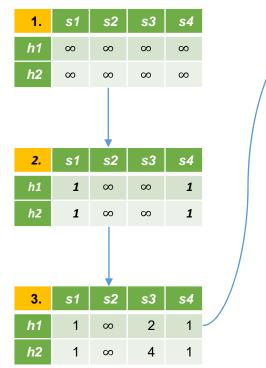
Element S1 S2 S3 S4 h1(x) h2(x) 0 1 0 0 1 1 1 1 0 0 1 0 2 4 2 0 1 0 1 3 2 3 1 0 1 1 4 0 4 0 0 1 0 0 3

4th row

Check Sig for S1,S3,S4:

$$SIG(i,c) = \min(SIG(i,c), h_i(r))$$

S1:
$$min(1,4) = 1$$
 S4: $min(1,4) = 1$
 $min(1,0) = 0$ $min(1,0) = 0$
S3: $min(2,4) = 2$
 $min(4,0) = 0$



s1	s2	s3	s4
1	3	2	1
1	2	4	1
s1	s2	s3	s4
1	3	2	1
	1 1 51	1 3 1 2 s1 s2	1 3 2 1 2 4 s1 s2 s3

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S2	S 3	S4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

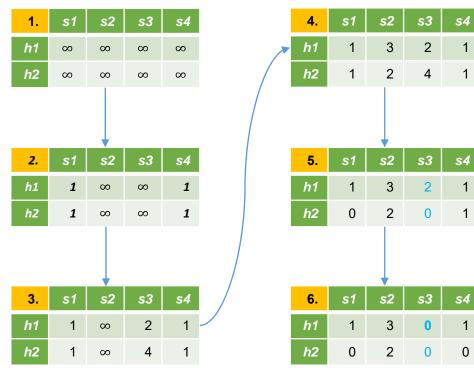
5th row

Check Sig for S3:

$$SIG(i,c) = \min(SIG(i,c), h_i(r))$$

S3:
$$min(2, 0) = 0$$

 $min(0,3) = 0$



Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

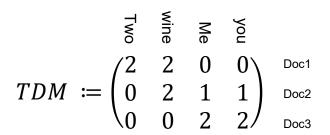
- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Modeling data as matrices

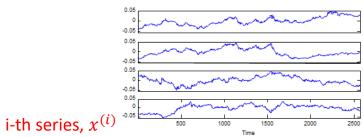
Matrices often arise with data:

- n objects (documents, images, web pages, time series...)
- each with **m** features
- \rightarrow Can be represented by an $n \times m$ matrix

doc1	Two for wine and wine for two
doc2	Wine for me and wine for you
doc3	You for me and me for you



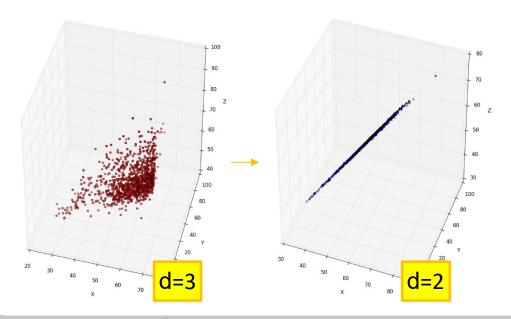
(filter, for',, and' as stopwords)



$$X_{NxM} \coloneqq egin{pmatrix} x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(M)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(M)} \\ \vdots & \vdots & \ddots & \vdots \\ x_N^{(1)} & x_N^{(2)} & \dots & x_N^{(M)} \end{pmatrix}$$
 values at time t, x_t

Why reduce Dimensions?

- Discover hidden correlations
- Remove redundant and noisy features
- Interpretation and visualization
- Easier storage and processing of the data



Axes of k-dimensional subspace are effective representation of the data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

PCA Formulation

Goal of PCA: find a lower-dimensional k < d representation of raw data

- **X** is *n x d* (raw data)
- Z = XP is $n \times k$ (reduces representation, P as PCA 'scores')
- **P** is *d x k* (columns are *k* principal components)
- Variance constraints

$$\left[\begin{array}{c} z \end{array} \right] = \left[\begin{array}{c} x \end{array} \right] \left[\begin{array}{c} P \end{array} \right]$$

PCA Formulation – Recall definition of Variance and Covariance

• $X \in \mathbb{R}^{n \times d}$: matrix of raw data

• x_i : i-th datapoint

• μ : mean

Variance: Measure of the spread of the data:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Covariance: Measure of how much two random variables vary together (zero mean assumption):

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i y_i)$$

Covariance Matrix: Variance of all features and the pairwise correlations between them (zero mean assumption):

$$\Sigma_X = \begin{pmatrix} Var(X_1) & \cdots & Cov(X_1, X_d) \\ \vdots & \ddots & \vdots \\ Cov(X_d, X_1) & \cdots & Var(X_d) \end{pmatrix} = \frac{1}{n}X^TX$$

PCA Formulation

Goal of PCA: find a lower-dimensional k < d representation of raw data

- **X** is *n x d* (raw data)
- Z = XP is $n \times k$ (reduces representation, PCA 'scores')
- P is d x k (columns are k principal components)
- Variance constraints
- **Q**: Which constraints in reduced representation?
 - No feature correlation, i.e. all off-diagonals in C_Z are zero \rightarrow avoids redundancy
 - Rank-ordered features by variance

PCA Solution

All matrices have an eigendecomposition:

- $C_x = U \Lambda U^T$ (eigendecomposition)
- Λ is $d \times d$ (diagonals are sorted eigenvalues, off-diagonals are zero)
- U is $d \times x d$ (columns are eigenvectors, sorted by their associated eigenvalues)

The d eigenvectors are orthonormal directions of max variance

- Associated eigenvalues equal variance in these directions
- 1st eigenvector is direction of max variance (variance is λ_1)

PCA - Which k<d to choose for dimensional reduction?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Analysis: Capture , most' variance in the data

 As eigenvalues are sorted variances in the directions specified by eigenvectors, we can choose a fraction of retained variance:

$$\frac{\sum_{i=1}^{R} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$$

E.g. choose k such that we retain 95% of the variance

Excursus: Eigenvectors and eigenvalues

Definition of the algebraic eigenvalue problem:

Let A be a square $d \times d$ matrix. If there exists a real scalar λ and a $d \times 1$ vector $v \neq 0$, such that:

$$Av = \lambda v$$

then λ is called an **eigenvalue** of A and v is the associated **eigenvecto**r.

How to find eigenvalues / eigenvectors of A?

- Solving the equation: $det(A \lambda I_{dxd}) = 0$ yields the eigenvalues
- For each eigenvalue λ_i , we find its eigenvector by solving the system of equations $(A \lambda_i I_{dxd}) v_i = 0$

Excursus: Eigenvectors and eigenvalues

Example:

$$A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$$

$$A - \lambda * I_{2x2} = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 - \lambda & 3 \\ 2 & 1 - \lambda \end{pmatrix}$$

$$\det(A - \lambda * I_{2x2}) = (2 - \lambda)(1 - \lambda) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda + 1) * (\lambda - 4)$$

 \rightarrow Largest eigenvalue (in magnitude) is $\lambda_1=4$, smallest eigenvalue $\lambda_2=-1$

$$(A - \lambda_1 * I_{2x2})v_1 = \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix} v_1 = \vec{0} \Rightarrow v_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$(A - \lambda_2 * I_{2x2})v_2 = \begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix} v_2 = \vec{0} \qquad \Rightarrow \quad v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

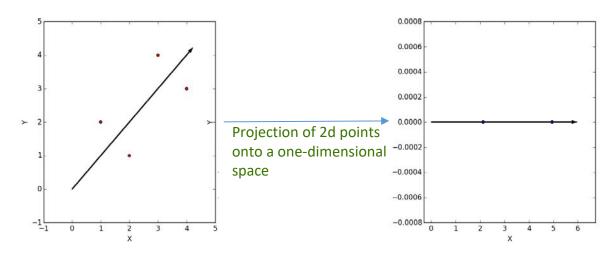
PCA Solution

Computation

- Treat a set of tuples as a matrix M
- Find eingevectors for M^TM or MM^T
 - Eigenvectors can be thought of a rotation in high-dimensional space
 - Principal eigenvector yields the axis along which the variance of the data is maximized
- → High-dimensional data can be replaced by its projection onto the most important axes

PCA Example

$$X = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{pmatrix} \Rightarrow X^{T}X = \begin{pmatrix} 30 & 28 \\ 28 & 30 \end{pmatrix}$$



- ⇒ **Eigenvalues:** solving $det(X^TX \lambda I) = 0$ yields $\lambda_1 = 58$, $\lambda_2 = 2$
- ⇒ **Eigenvectors:** solving $(X^TX \lambda_i I)v_i$ yields $E = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$
- \rightarrow **Projection** of data on principal component by using first k columns of E:

$$XE_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 3/\sqrt{2} \\ 3/\sqrt{2} \\ 7/\sqrt{2} \\ 7/\sqrt{2} \end{pmatrix}$$

Text Processing & High Dimensionality Data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Singular Value Decomposition (SVD) - Generalization of the eigenvalue decomposition

Let X_{nxd} be a data matrix and let k be its rank. We can decompose X into matrices U, Σ, V as follows:

- X (Input data matrix) is a $n \times d$ matrix (e.g. n customers, d products)
- U (Left singular vectors) is a $n \times n$ column-orthonormal matrix
- Σ (Singular values) is a diagonal $n \times d$ with the elements being the singular values of X
- **V** (Right singular vecors) is a $d \times d$ column-orthonormal matrix

Singular Value Decomposition (SVD)

Computing SVD of a Matrix

Connected to eingevalues of matrices X^TX and XX^T $X^TX = (U \Sigma V^T)^T U \Sigma V^T = (V^T)^T \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T$

→ Multiplying each side with V:

$$(X^T X) V = V \Sigma^2$$

Remember the Eigenwert-Problem: $Av = \lambda v$

- \rightarrow Same algorithm that computes the *eigenpairs* for X^TX gives us matrix V for SVD
- \rightarrow Square root of singular values gives us the eigenvalues for X^TX
- \rightarrow U can be found by the same procedure as V, just with XX^T

Singular Value Decomposition (SVD)

How to reduce the dimensions?

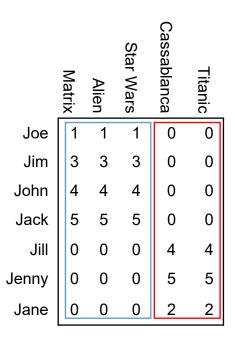
Let $X = U \Sigma V^T$ (with rank(A) = r) and $Y = U S V^T$, with $S \in \mathbb{R}^{r \times r}$ where $s_i = \lambda_i$ (i = 1, ..., k) else $s_i = 0$

$$\begin{pmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{pmatrix} = \begin{pmatrix} u_{1,1} & \cdots & u_{1,r} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,r} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots \\ 0 & \ddots & \vdots \\ \vdots & \cdots & \lambda_r \end{pmatrix} \begin{pmatrix} v_{1,1} & \cdots & v_{1,d} \\ \vdots & \ddots & \vdots \\ v_{r,1} & \cdots & v_{r,d} \end{pmatrix}$$

→ New matrix Y is a **best rank-k approximation to X**

Singular Value Decomposition (SVD) – Example

Ratings of movies by users



Let A be a mxn matrix, and let r be the rank of A

Here:

- a rank-2 matrix representing ratings of movies by users
- 2 underlying concepts: science-fiction + romance

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf

Singular Value Decomposition (SVD) – Example

Ratings of movies by users - SVD

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} .14 & 0 \\ .42 & 0 \\ .56 & 0 \\ .70 & 0 \\ 0 & .6 \\ 0 & .75 \\ 0 & .30 \end{pmatrix} * \begin{pmatrix} 12.4 & 0 \\ 0 & 9.5 \end{pmatrix} * \begin{pmatrix} .58 & .58 & .58 & 0 & 0 \\ 0 & 0 & 0 & .71 & .71 \end{pmatrix}$$

$$X = U * \Sigma * V^T$$

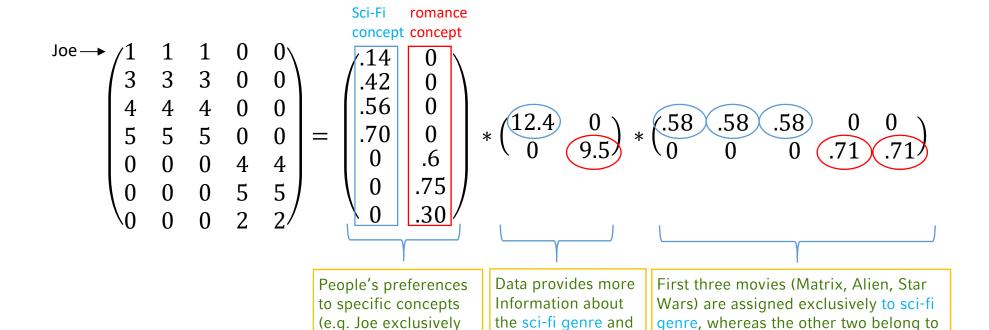
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Raw data of user -movie-ratings
$$\begin{pmatrix} \text{Connects people} \\ \text{to ,concepts'} \end{pmatrix} \text{,strength' of each concept} \text{ Relates movies to concepts}$$

Singular Value Decomposition (SVD) – Example

Ratings of movies by users - SVD Interpretation

likes sci-fi movies but

rates them low)



it

the people who like

the romance, concept'

SVD and low-rank approximations

Summary

Basic SVD Theorem: Let A be an m x n matrix with rank p

- Matrix A can be expressed as $A = U \Sigma V^T$
- Truncate SVD of A yields 'best' rank-k approximation given by $A_k = U_k \Sigma_k V_k^T$, with k < d

Properties of truncated SVD:

- Often used in data analysis via PCA
- Problematic w.r.t sparsity, interpretability, etc.

Problems with SVD / Eigen-analysis

Problems: arise since structure in the data is not respected by mathematical operations on the data

Question: Is there a 'better' low-rank matrix approximations in the sense of ...

- ... structural properties for certain application
- ... respecting relevant structure
- ... interpretability and informing intuition
- → Alternative: CX and CUR matrix decompositions

Text Processing & High Dimensionality Data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

CX and CUR matrix decompositions

Definition CX: A CX decomposition is a low-rank approximation explicitly expressed in terms of a small number of *columns of A*

Definition CUR: A CUR matrix decomposition is a low-rank approximation explicitly expressed in terms of a small number of *columns* and *rows* of A

CUR Decomposition

- In large-data applications the raw data matrix M tend to be very sparse (e.g. matrix of customers/products, movie recommendation systems...)
- Problem with SVD:
 - Even if M is sparse, the SVD yields two dense matrices U and V
- Idea of CUR Decomposition:
 - By sampling a sparse Matrix M, we create two sparse matrices C ('columns') and R ('rows')

CUR Definition

Input: let **M** be a **m** x **n** matrix

1.Step:

- Choose a number r of 'concepts' (c.f. rank of matrix)
 - Perform biased Sampling of r cols from M and create a $m \times r$ matrix C
 - Perform biased Sampling of r rows from M and create a r x n matrix R

2.Step:

- Construct **U** from **C** and **R**:
 - Create a **r** x **r matrix W** by the intersection of the chosen cols from C and rows from R
 - Apply SVD on $W = X \Sigma Y^t$
 - Compute Σ^+ , the moore-penrose pseudoinverse of Σ
 - Compute $U = Y(\Sigma^+)^2 X^t$

CUR – how to sample rows and cols from M?

Sample columns for C:

Input: matrix $M \in \mathbb{R}^{m \times n}$, sample size r

Output: $C \in \mathbb{R}^{m \times r}$

- 1. **For** x = 1 : n do
- 2. $P(x) = \sum_{i} (m_{i,x})^2 / ||M||_F^2$
- 3. **For** y = 1 : r do
- 4. Pick $z \in 1:n$ based on Prob(x)
- 5. $C(:, y) = M(:, z) / \sqrt{r * P(z)}$

Frobenius-Norm: $||M||_F = \sqrt{\sum_i \sum_j (m_{i,j})^2}$

(sampling of R for rows analogous)

CUR Definition

Example - Sampling

	Matrix	Alien	Star Wars	Cassablanca	Titanic
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

Sample columns:

$$\sum_{i} m_{i,1} = \sum_{i} m_{i,2} = \sum_{i} m_{i,3} = 1^{2} + 3^{2} + 4^{2} + 5^{2} = 51$$

$$\sum_{i} m_{i,4} = \sum_{i} m_{i,5} = 4^2 + 5^2 + 2^2 = 45$$

FrobeniusNorm: $||M||_F^2 = 243$

→
$$P(x_1) = P(x_2) = P(x_3) = \frac{51}{243} = 0.210$$

→
$$P(x_4) = P(x_5) = \frac{45}{243} = 0.185$$

CUR Definition

Example - Sampling

Sample columns:

- Let r = 2
- Randomly choosen columns, e.g. Star Wars + Cassablanca

0

Jane

$$[1,3,4,5,0,0,0]^T \frac{1}{\sqrt{r * P(x_3)}} = [1,3,4,5,0,0,0]^T \frac{1}{\sqrt{2 * 0.210}} = [1.54,4.63,6.17,7.72,0,0,0]^T$$

$$[0,0,0,0,4,5,2]^T \frac{1}{\sqrt{r * P(x_4)}} = [0,0,0,0,4,5,2]^T \frac{1}{\sqrt{2 * 0.185}} = [0,0,0,0,6.58,8.22,3.29]^T$$

$$= > C = \begin{pmatrix} 1.54 & 0 \\ 4.63 & 0 \\ 6.17 & 0 \\ 7.72 & 0 \\ 0 & 6.58 \\ 0 & 8.22 \\ 0 & 3.29 \end{pmatrix}$$

R is constructed analogous

CUR Definition

Input: let **M** be a **m** x **n** matrix

1.Step:

- Choose a number **r** of 'concepts' (c.f. rank of matrix)
 - Perform biased Sampling of r cols from M and create a $m \times r$ matrix C
 - Perform biased Sampling of **r** rows from **M** and create a **r x n matrix R**

2.Step:

- Construct **U** from **C** and **R**:
 - Create a r x r matrix W by the intersection of the chosen cols from C and rows from R
 - Apply SVD on $W = X \Sigma Y^T$
 - Compute $oldsymbol{\Sigma}^+$, the moore-penrose pseudoinverse of Σ
 - Compute $U = Y(\Sigma^+)^2 X^T$

CUR Definition

Example – Calculating U

Suppose C (Star Wars, Cassablance) and R (Jenny, Jack)

Cassablanca Star Wars Titanic Matrix Alien Joe Jim 0 John 0 0 Jack Jill 0 5 0 Jenny 2 0 Jane

 \rightarrow W as intersection of cols from C and rows from R:

$$W = \begin{pmatrix} 0 & 5 \\ 5 & 0 \end{pmatrix}$$

Ensure the correct order!

 \rightarrow SVD applied on W:

$$W = \begin{pmatrix} 0 & 5 \\ 5 & 0 \end{pmatrix} = X \Sigma Y^{T} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

 \rightarrow Pseudo-Inverse of Σ (replace diagonal entries with their numerical inverse)

$$\Sigma^+ = \begin{pmatrix} 1/5 & 0 \\ 0 & 1/5 \end{pmatrix}$$

 \rightarrow Compute U

$$U = Y (\Sigma^{+})^{2} X^{T} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/5 & 0 \\ 0 & 1/5 \end{pmatrix}^{2} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/25 \\ 1/25 & 0 \end{pmatrix}$$

Sources

High Dimensionality Data

[1] Less is More: Compact Matrix Decomposition for Large Sparse Graphs, Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos, Proceedings of the 2007 SIAM International Conference on Data Mining. 2007, 366-377

[2] Rajaraman, A.; Leskovec, J. & Ullman, J. D. (2014), Mining Massive Datasets.