Chapter 7:

Text Processing & High Dimensional Data

Big Data Management and Analytics



Recap Data Science Intro:

... Data contains value and knowledge ...

... but to extract the knowledge data needs to be
 Stored } up to now, we have
* Managed learned about this.
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Recap Data Science Intro:

... Data contains value and knowledge ...

... but to extract the knowledge data needs to be

» Stored up to now, we have
* Managed | learned about this.
« And ANALYZED  Now, we will focus on this part

-> Big Data Analytics = Data Mining = Predictive Analytics =
Data Science

Big Data Management and Analytics



=

DATABASE
SYSTEMS
GROUP

Introduction

Recap Data Science Intro:
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Variety: different forms of data

* Unstructured, e.g. data in form of text
e Potentially high dimensional data
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Text Processing
- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High-Dimensional Data
- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR



Text Processing — Motivation

Given: Set of documents

Searching for patterns in large sets of document objects
= Analysing the similarity of objects

In many applications the documents are not identical, yet they share large
portions of their text:

- Plagiarism

- Mirror Pages

- Articles from the same source
Problems in the field of Text Mining:

- Stop words (e.q. for, the, is, which ,...)

- ldentify word stem

- High dimensional features (d > 10°000)

- Terms are not equally relevant within a document

- The frequency of terms are often h; = 0 = very sparse feature space

- We will focus on character-level similarity, not ,similar meaning’



Text Processing — Motivation (Common approaches - for details see KDD I)

How to handle relevancy of a term?

TF-IDF (Term Frequency * Inverse Document Frequency)
n(t,d)

maxy,egn(w,d)
frequency n(t,d) := number of occurrences of term (word) t in document d

- Emprical probability of term t in document d: TF(t,d) =

|DB|
|{d|deDBAted}|

- Inverse probability of t regarding all documents: IDF(t) =

- Feature vector is given by: r(d) = (TF(ty,d) * IDF(ty), ..., TF(t,, d) * IDF(t,)

How to handle sparsity?

Term frequency often 0 => diversity of mutual Euclidean distances quite low
- other distance measures required:

- Jaccard Coefficient: d;qccqrq (D1, D) = :Zizgz: (Documents - set of terms)
- Cosinus Coefficient: d yginus(D1, D;) = ||1§D||1’l|)|i>> “ (useful for high-dim. data)
11*NP2



Shingling of Documents

General Idea: construct a set of short strings that appear within a document

K- shingles
Definition: A k-shingle is any substring of length k found within the
document.
—> Associate with each document the set of k-shingles that appear n times
within that document

Hashing Shingles:
Idea: pick hash function that maps strings of length k to some number of
buckets and treat the resulting bucket number as the shingle
—> set representing document is then set of integers



Similarity-Preserving Summaries of Sets

Problem: Sets of shingles are large
- replace large sets by much smaller representations called ,signatures’

Matrix representation of Sets
Characteristic matrix:
- columns correspond to the sets (documents)
- rows correspond to elements of the universal set from which elements
(shingles) of the columns are drawn documents

Element S1
Example:

- universal set: {A,B,C,D,E},
- S1={A,D}, S2 ={C}, S3={B,D,E}, S4={A,C,D}

shingles-




Similarity-Preserving Summaries of Sets

Minhashing

Idea: To minhash a set represented by a column ¢; of the characterisitic matrix, pick
a permutation of the rows. The value of the minhash is the number of the first row, in
the permutated order, with h(c¢;) = 1

Example: =
ement S1
Suppose the order of rows ,beadc’
h(S1) =A
h(S2)=C
h(S3) =B

h(S4) =A




Similarity-Preserving Summaries of Sets

Minhashing and Jaccard Similarity
The probability that the minhash function for a random permutation of rows
produces the same value for two sets equals the Jaccard similarity of those sets

Three different classes of similarity between sets (documents)
- Type X rows have 1 in both cols
- Type Y rows have 1 in one of the columns
- Type Z rows have 0 in both rows

Element S1 S2 S3 S4

Example
Considering the cols of ST and S3:
The probability that h(S1) = h(S3) is given by:

SIM(51,53) = (xfy) = %

(Note that x is the size of S1 N S2 and (x+y) is the size of S1 U 52)




Similarity-Preserving Summaries of Sets

Minhash Signatures

- Pick a random number n of permutations of the rows

- Vector [h1(S), h,(S), ..., h,(S)] represents the minhash signature for S

- Put the specific vectors together in a matrix, forms the signature matrix

- Note that the signature matrix has the same number of columns as input matrix M
but only n rows

How to compute minhash signatures:
1. Compute hy(S), hy(S), ..., h (S)
2. For each row r: For each column c do the following:
(a) if c has 0 in row r, do nothing
(b) if chas 1 inrow r then foreachi = 1,2,...,n set
SIG(i,c) = min(SIG(i,c), h;i(r))

-> Signature matrix allows to estimate the Jaccard similarities of the underlying sets!



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : hy(x) = (x + 1) mod 5 and h,(x) = (3x+ 1) mod 5

initialization
comet 5152 53 50 iy a0 ) i | | sa | s
|- - - -

- [

|

= EEaEE
- DD
B - -

1st row
Check Sig for S1 and S4:
SIG(i,c) = min(SIG(i,c),h;(1))

S1: min(o0,1) =1
min(co,1) =1
S4: min(o0,1) =1
min(co,1) =1



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : hy(x) = x + 1mod 5 and hy(x) = (3x+ 1) mod 5

initialization
cemen vior v [P | sz | 5o | e |

> [

|

EEmEEem
0 1

2nd row o

Check Sig for S3: G e | e | 4

SIG(i,c) = min(SIG(i,c),h;(1))

S3: min(e0,2) = 2 =
min(OO, 4') =4 1 0o 2 1

10041



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : h;(x) = x + 1mod 5 and h,(x) = (3x + 1)mod5

initialization
TEEEEEEED $  EEEEe e
e oo 1 3 2 1

- - - D
0 0 1) 0 1 2 4 1

EEmEEem
(o) 1

3rd row 1 o
Check Sig for S2 and S4: 1 1

SIG(i,c) = min(SIG(i,c),h;(1))

(0]
1

S2: min(o,3) = 3 N s 3
min(oo,2) = 2 1 o | 2
S4: min(1,3) =1 T a1

min(1,2) =1



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : h;(x) = x + 1mod 5 and h,(x) = (3x + 1)mod5

initialization
HEEEE
m- - - -

h2 0o oo oo oo

Element S2 S3 S4 h1(x) h2(x)

= EEaEE

4th row 1 o w1
Check Sig for $1,53,54: 1 o 1

SIG(i,c) = min(SIG(i,c),h;(1))

(0]
1

S1: min(1,4) =1 S4:min(1,4) =1 N s | 3
min(1,0) =0 min(1,0) =0 1 w 2
S3: min(2,4) = 2 1 o 4 1

min(4,0) =0

. P
1321

1241

N =i 2| sa | ]
1 3 2 1

o
ozoo



Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : h;(x) = x + 1mod 5 and h,(x) = (3x + 1)mod5

initialization
: : 0 00 oo o) 1 3 2 1
“ ' o © 0 0 1 2 4 1

|

= EEaEE N =i 2| sa | ]
1 3 2 1

5th row 1w w1
Check Sig for S3: 1| e 1 0o 2 0 1

SIG(i,c) = min(SIG(i,c),h;(1))

o0

S3: min(2,0) = 0 . . mEEn
min(0,3) =0 1 w© 2 1 B s o ¢

1 o 4 1 0o 2 0 0

|
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Modeling data as matrices

Matrices often arise with data:
- n objects (documents, images, web pages, time series...)
- each with m features

— Can be represented by an n x m matrix

0.05

4:;WM
N i
:EWM
O D e s Gl
i-th series, x® o
- Z
S 3 = é x(l) x(z) x(M)
2 2 0 0\ o O @
(1) (2) (M) | t time t
TDM = (0 2 1 1) o Xy = | B |HE] e x|l time
0 0 2 2/ oo SO IS R
oc x(1) x(Z) x(M)
(filter ,for’, ,and’ as stopwords ) N l, h N




Why reduce Dimensions?

Discover hidden correlations

Remove redundant and noisy features
Interpretation and visualization

» Easier storage and processing of the data

Axes of k-dimensional
subspace are effective
representation of the

data
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PCA Formulation

Goal of PCA: find a lower-dimensional k < d representation of
raw data

« Xisnxd (raw data)

« Z=XP isnxk (reduces representation, P as PCA "scores’)
 Pisdxk (columns are k principal components)
 Variance constraints

AERI0




PCA Formulation — Recall definition of Variance and Covariance

« X € R**4: matrix of raw data
* Xx;:i-th datapoint
e W:mean

Variance: Measure of the spread of the data:
n
1
Var() = = ) (x; - )
n i=1
Covariance: Measure of how much two random variables vary together (zero mean assumption):
n
1
Cov(X, V) == > (xiy1)
i=1
Covariance Matrix: Variance of all features and the pairwise correlations between them

(zero mean assumption):

=—X"X

Var(X1) - Cov(Xy1,Xgq) 1
: : : -

ZX == . . .
Cov(Xg,X1) -  Var(Xy)




PCA Formulation

Goal of PCA: find a lower-dimensional k < d representation of
raw data

Xisnxd (raw data)

Z = XP isnx k (reduces representation, PCA ‘scores’)
Pis d x k (columns are k principal components)
Variance constraints

Q: Which constraints in reduced representation?

* No feature correlation, i.e. all off-diagonals in C; are zero
—> avoids redundancy

 Rank-ordered features by variance



PCA Solution

All matrices have an eigendecomposition:

c C,=UA UT (eigendecomposition)
e Ais d x d (diagonals are sorted eigenvalues, off-diagonals are zero)
e Uisdxd (columns are eigenvectors, sorted by their associated eigenvalues)

The d eigenvectors are orthonormal directions of max variance
« Associated eigenvalues equal variance in these directions
* st eigenvector is direction of max variance (variance is 1,)



PCA - Which k<d to choose for dimensional reduction?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Analysis: Capture ,most’variance in the data

 As eigenvalues are sorted variances in the directions specified by
eigenvectors, we can choose a fraction of retained variance:

4 )
k
i=1 /li E.g. choose k such that we retain 95% of
d 1. the variance
1=17%
\ J




Excursus: Eigenvectors and eigenvalues

Definition of the algebraic eigenvalue problem:

[Let A be a square d x d matrix. If there exists a real scalarAandad x 1
vector v # 0, such that:
Av = Av,

Kthen A is called an eigenvalue of A and v is the associated eigenvector. y

How to find eigenvalues / eigenvectors of A?

 Solving the equation: det(A — A1,4,4) = 0 yields the eigenvalues

* For each eigenvalue A;, we find its eigenvector by solving the system of
equations (A — A; Izq) v; =0



Excursus: Eigenvectors and eigenvalues

Example:

-G

(2 3y ,(1 0\_(2-21 3
A_’l*lm_(z 1) ’1(0 1)'( 2 1—,1)
det(A — A % Ipyy) = 2=DA =) —6= A2 =31 —4=A+1)*(A—4)

—> Largest eigenvalue (in magnitude) is ; = 4, smallest eigenvalue 1, = —1

(A—/11*12x2)v1=(_2 3)171:6 = 1= (3)

2 =3 2
(A = Az * Ipxp)vy = (3 ;) 1 =0 = v= (_11)



PCA Solution

Computation

* Treat a set of tuples as a matrix M

 Find eingevectors for M'M or MMT
* Eigenvectors can be thought of a rotation in high-dimensional space
* Principal eigenvector yields the axis along which the variance of the
data is maximizied

- High-dimensional data can be replaced by its projection
onto the most important axes



PCA Example .

0.0006 -
0.0004 1

0.0002 -

5 " . - —P  0.0000}
Projection of 2d points

onto a one-dimensional ~%%%f
. space ~0.0004

~0.0006

-1 ; —— : 000081~

s
B

- Eigenvalues: solving det(X7X — AI) = 0 yields A; = 58,4, = 2

- Eigenvectors: solving (X"X — A;1)v; yields E = (1/\/7 —1/\/7>

1/V2 142

- Projection of data on principal component by using first k columns of E

1 2 3/V2

e - [2 1 (1/ﬁ>= 3/V2
73 4 \1pz 7/\2
4 3 7/32
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Singular Value Decomposition (SVD) - Generalization of the
eigenvalue decomposition

Let X,,,q4 be a data matrix and let k be its rank. We can
decompose X into matrices U, X,V as follows:

X U pX vr
xl’l xl,d ul’l ul’n /11 ces 0 vl’l oo vl,d
o)l ) ) )
Xn1 - Xnd Un1 = Unn 0 - A4 Vax = Vdd
X (Input data matrix) is a n x d matrix (e.g. n customers, d products)
e U (Left singular vectors) is a n x n column-orthonormal matrix

e X (Singular values) is a diagonal n x d with the elements being the singular values of X
* V (Right singular vecors) is a d x d column-orthonormal matrix



Singular Value Decomposition (SVD)

Computing SVD of a Matrix

Connected to eingevalues of matrices XTX and XX7
XTx=wzvHluxvt = wHIxTyTuxvr =y x2y?

= Multiplying each side with V: Remember the
XTX)V =V X? Eigenwert-Problem:
Av = Av

- Same algorithm that computes the eigenpairs for XTX gives us matrix V
for SVD

- Square root of singular values gives us the eigenvalues for X7X

- U can be found by the same procedure as V, just with XX7



Singular Value Decomposition (SVD)

How to reduce the dimensions?

Let X=UZ VT (with rank(A)=r)and Y =U SV', withS € R"*" where s; =
A (i=1,..,k) elses; =0

- New matrix Y is a best rank-k approximation to X



Singular Value Decomposition (SVD) — Example

Ratings of movies by users

Joe
Jim
John
Jack
Jill
Jenny

Jane

@)

Q)

0w 2
g8 & 4
= S
= 23 3 5
X 3 »w 9V 0O
1 1 1 0 0
3 3 3 0 0
4 4 40 o0
5 5 5 0 0
0O 0 O 4 4
0O 0 O 5 5
0O 0 O 2 2

Let A be a mxn matrix, and let r be the rank of A

Here:
* arank-2 matrix representing ratings of movies by users
e 2 underlying concepts: science-fiction + romance

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf



Singular Value Decomposition (SVD) — Example

Ratings of movies by users - SVD

1 1 1 0 O 14 0
/ 3 3 30 0\ 42 0\
4 4 4001 1.5 0 124 0\ (58 58 58 0 0
55500—700 *(o 95)*(0 o o0 .71 71)
0 0 0 4 4 6 ' U
\0 0 05 5 / \0 -75
O 0 0 2 2

X = U ) * 4
Raw data of user Connects people ,strength’ of Relates movies
-movie-ratings to ,concepts’ each concept to concepts
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Singular Value Decomposition (SVD) — Example

Ratings of movies by users - SVD Interpretation

Sci-Fi romance
concept concept

Joem> /1 1 1 0 O 1411 0
/33300\ /.420\
4 4 4 0 0 56/| 0
5 55 0 0|=].70]0 &.Ood
00 0 4 4 0| 6l| YO O V0 0 0 @I
\00055/ \0-75)
00 0 2 2 0 130

Y ) | Y J \ Y J
People’s preferences Data provides more || First three movies (Matrix, Alien, Star
to specific concepts Information about Wars) are assigned exclusively to sci-fi
(e.g. Joe exclusively the sci-fi genre and || genre, whereas the other two belong to
likes sci-fi movies but | | the people who like || the romance ,concept’

rates them low) it

Big Data Management and Analytics 37



SVD and low-rank approximations

Summary

Basic SVD Theorem: Let A be an m x n matrix with rank p
- Matrix A can be expressed asA=UZX VT
- Truncate SVD of A yields ‘best’ rank-k approximation given by

Ay = U, 5V, with k < d
Properties of truncated SVD:

- Often used in data analysis via PCA
- Problematic w.r.t sparsity, interpretability, etc.



Problems with SVD / Eigen-analysis

Problems: arise since structure in the data is not respected by
mathematical operations on the data

Question: Is there a ‘better’ low-rank matrix approximations in

the sense of ...
- ... structural properties for certain application
- ... respecting relevant structure
- ... interpretability and informing intuition

- Alternative: CX and CUR matrix decompositions
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CX and CUR matrix decompositions

Definition CX : A CX decomposition is a low-rank approximation
explicitly expressed in terms of a small number of columns of A

Definition CUR : A CUR matrix decomposition is a low-rank
approximation explicitly expressed in terms of a small number of columns
and rows of A

r D FN

A ~ C*[U]*[R]




CUR Decomposition

- In large-data applications the raw data matrix M tend to be
very sparse (e.q. matrix of customers/products , movie
recommendation systems...)

- Problem with SVD :

- Even if M is sparse, the SVD yields two dense matrices U and V

- Idea of CUR Decomposition:
- By sampling a sparse Matrix M, we create two sparse matrices C
(‘columns’) and R (‘rows’)



CUR Definition

Input: let M be a m x n matrix

1.Step:

- Choose a number r of ‘concepts’ (c.f. rank of matrix)
- Perform biased Sampling of r cols from M and create a m x r matrix C
- Perform biased Sampling of r rows from M and create a r x n matrix R



CUR - how to sample rows and cols from M?

Sample columns for C:

Input: matrix M € R™*™  sample sizer
Output: C € R™*7

1. Forx=1:ndo

2 P(x) =Y,(m; )%/ IM||Z

3. Fory=1:rdo

4, Pick z € 1:n based on Prob(x)

5

C(:,y)=M(:,2)/r *P(2)

(sampling of R for rows analogous)

Frobenius-Norm:

1M1 = /Z > my)?
ij




CUR Definition

Example - Sampling

& Sample columns:
@ 7
8 & 4
= g o
> = o 7
=52 3 3 Zmi1=2mi2=2mi3=12+32+42+52=51
X > (7] Q (@] ' ’ - ’ ' !
Joe|1 1 1 0 0 ' ‘ '
Jmis 33 000 Zmi’4=2mi5=42+52+22=45
John|4 4 4 0 0 - i
Jack | 5 5 5 0 0
_ FrobeniusNorm : |M||% = 243
Jilo o 0o 4 4
Jenny | 0 0 0 5 5 > P(x;) = P(xp) = P(x3) = == = 0210
Jane | 0 0O 0 2 2 45
> P(JC4,) = P(XS) = % = 0.185
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CUR Definition

Example - Sampling
Sample columns:
e letr=2

@)
0 8  Randomly choosen columns, e.g. Star Wars + Cassablanca
= S 5 4
> =2 = v 7
S8 53 2 [1,3,4,5,0,0,0]7 = [1,3,4,5,0,0,0]7 = [1.54,4.63,6.17,7.72,0,0,0]
>< : (2] m O ) ) ) ) ) ) —— ) ) ) ) ) ) —— . ) . ) . ) . ) ) )
Joe |1 1 [1] o] o VT * P(xs) 2+0.210
Jm |3 3 [3/]|0] 0O . .
[0,0,0,0,4,5,2]T ——=1[0,0,0,0,4,5,2]T ——==[0,0,0,0, 6.58,8.22,3.29]7
Jonn| 4 4 |40 O POl = -o1igs
Jack [ 5 5 5] |0 0
Jimj o 0 (0|4 4 1.54 0
Jenny | O O |0| |5| 5 4.63 0
0 0 |02 2 o170
Jane O] L] =>C=|772 0
0 6.58
0 822 R is constructed analogous
0 3.29

Big Data Management and Analytics
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CUR Definition

Input: let M be a m x n matrix

2.Step:

- ConstructU from € and R:
- Create ar xr matrix W by the intersection of the chosen cols from C and
rows from R
- Apply SVDonW =XX YT
- Compute X*, the moore-penrose pseudoinverse of X

- ComputeU = Y(ZH)? XT
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CUR Definition

Example — Calculating U
Suppose C (Star Wars, Cassablance) and R (Jenny, Jack)

o 3? - W as intersection of cols from C and rows from R:
5 9
= = o — Ensure the
D = = g & _ 0 5 correct order!
5333 2 W= (5 0)
Joe[1 1 [1| 0| o| = SVDappliedon W:
Jm|3 3 |3 /0| o0
(0 5\ _ r_ (0 —=1\/5 0\/—-1 0
John | 4 4 |4| 0| o W—(S 0)—XZY —(_1 0)(0 5)(0 _1)
Jack |5 5 15110 O| - Pseudo-Inverse of X (replace diagonal entries with their numerical inverse)
Jitfo o (o] |4 4
1/5 0
Jenny [0 0 |o|[5] 5] Z+=< )
Jane | 0O 0 |0 |2 2 0 1/5
— - Compute U
2
_yyteyT - (—1 0 (1/5 0) 0 -1 _(0 1/25)
u=y "=, )% 1/5 (L )= 1/25 0

Big Data Management and Analytics
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