

Chapter 7:

Stream Applications & Algorithms (Clustering and Classification)

Lectures : Dr Eirini Ntoutsi, PD Dr Matthias Schubert Tutorials: PD Dr Matthias Schubert Script © 2015 Eirini Ntoutsi, Matthias Schubert, Arthur Zimek

CluStream [AggEtAl03]

- The stream clustering process is separated into:
 - an <u>online</u> micro-cluster component, that summarizes the stream locally as new data arrive over time
 - Micro-clusters are stored in disk at snapshots in time that follow a pyramidal time frame.
 - an <u>offline macro-cluster</u> component, that clusters these summaries into global clusters
 - Clustering is performed upon summaries instead of raw data

- Assume that the data stream consists of a set of multi-dimensional records X₁,...,X_n,..., arriving at T₁,...,T_n,...: X_i = (x_i¹,...,x_i^d)
- The micro-cluster summary for a set of d-dimensional points (X₁, X₂, ..., X_n) arriving at time points T₁, T₂, ..., T_n is defined as:

• Easy calculation of basic measures to characterize a cluster:

• Center:
$$\frac{CF1^x}{n}$$
 • Radius: $\sqrt{\frac{CF2^x}{n} - \left(\frac{CF1^x}{n}\right)^2}$

- Important properties of micro-clusters:
 - Incrementality: $CFT(C_1 \cup p) = CFT(C_1) + p$
 - Additivity: $CFT(C_1 \cup C_2) = CFT(C_1) + CFT(C_2)$
 - Subtractivity: $CFT(C_1 C_2) = CFT(C_1) CFT(C_2)$, $C_1 \supseteq C_2$

CluStream: overview

- A fixed number of *q* micro-clusters is maintained over time
- Initialize: apply *q*-Means over *initPoints*, built a summary for each cluster
- Online micro-cluster maintenance as a new point *p* arrives from the stream
 - Find the closest micro-cluster *clu* for the new point *p*
 - If *p* is within the max-boundary of *clu*, *p* is <u>absorbed</u> by *clu*
 - o o.w., a <u>new cluster</u> is created with p
 - The number of micro-clusters should not exceed q
 - \circ <u>Delete</u> most obsolete micro-cluster or <u>merge</u> the two closest ones
- Periodic storage of micro-clusters snapshots into disk
 - At different levels of granularity depending upon their recency
- Offline macro-clustering
 - Input: A user defined time horizon h and number of macro-clusters k to be detected
 - Locate the valid micro-clusters during h
 - Apply k-Means upon these micro-clusters ightarrow k macro-clusters

CluStream: Initialization step

- Initialization
 - Done using an offline process in the beginning
 - Wait for the first *InitNumber* points to arrive
 - Apply a standard k-Means algorithm to create q clusters
 - For each discovered cluster, assign it a unique ID and create its micro-cluster summary.
- Comments on the choice of *q*
 - much larger than the natural number of clusters
 - much smaller than the total number of points arrived

CluStream: Online step

- A fixed number of *q* micro-clusters is maintained over time
- Whenever a new point *p* arrives from the stream
 - Compute distance between p and each of the q maintained micro-cluster centroids
 - $clu \leftarrow$ the closest micro-cluster to p
 - Find the max boundary of *clu*
 - It is defined as a factor of *t* of *clu* radius
 - If p falls within the maximum boundary of *clu*
 - o *p* is absorbed by *clu*
 - o Update clu statistics (incremental property)
 - Else, create a new micro-cluster with p, assign it a new ID, initialize its statistics
 - To keep the total number of micro-clusters fixed (i.e., q):
 - Delete the most obsolete micro-cluster or
 - If its safe based on its time statistics
 - Merge the two closest ones (Additivity property)
 - When two micro-clusters are merged, a list of ids is created. This way, we can identify the component micro-clusters that comprise a micro-cluster.

- Micro-clusters are stored as snapshots in time following the pyramidal pattern
 - They are stored at different levels of granularity based on their recency
- Snapshots are classified at different orders/levels i
 - For each order i, we store snapshots if the current timestamp t is dived by aⁱ, but not by aⁱ⁺¹(to avoid redundancy)
 - At most a^b+1 snapshots are stored at each order; if a new snapshot arrives the oldest one is deleted.

•	#orders: log _a (t)	Level	Snapshots
•	#stored snapshots: (a ^b +1)log _a (t)	0	$59\ 57\ 55\ 53\ 51$
-		1	$58\ 54\ 50\ 36\ 42$
		2	$60 \ 52 \ 44 \ 36 \ 28$
		3	$56\ 40\ 24\ 8$
		4	48 16
		5	32

Snapshots stored at t = 60, a=2, b=2

CluStream: Offline step

- The offline step is applied on demand
- User input: time horizon *h*, *#* macro-clusters k to be detected
- Step 1: Find the active micro-clusters during *h*:
 - We exploit the subtractivity property to find the active micro-clusters during *h*:
 - Suppose current time is t_c . Let $S(t_c)$ be the set of micro-clusters at t_c .
 - Find the stored snapshot which occurs just before time t_c -h. We can always find such a snapshot h'. Let $S(t_c-h')$ be the set of micro-clusters.
 - For each micro-cluster in the current set $S(t_c)$, we find the list of its component micro-cluster ids. For each of the list of ids, find the corresponding micro-clusters in $S(t_c-h')$.
 - Subtract the CF vectors for the corresponding micro-clusters in $S(t_c-h')$
 - This ensures that the micro-clusters created before the user-specified horizon do not dominate the result of clustering process
- Step 2: Apply k-Means over the active micro-clusters in *h* to derive the *k* macro-clusters
 - Initialization: centers are not picked up randomly, rather sampled with probability proportional to the number of points in a given micro-cluster
 - Distance is the centroid distance
 - New centers are defined as the weighted centroids of the micro-clusters in that partition

CluStream: overview

- + CluStream clusters large evolving data streams
- + Views the stream as a changing process over time, rather than clustering the whole stream at a time
- + Can characterize clusters over different time horizons in changing environment
- + Provides flexibility to an analyst in a real-time and changing environment
- Fixed number of micro-clusters maintained over time
- Sensitive to outliers/ noise

- A very important task given the availability of streams nowadays
- Stream clustering algorithm maintain a valid clustering of the evolving stream population over time
- Two generic approaches
 - Online maintenance of a final clustering model
 - Online summarization of the stream and offline clustering
 o Summaries!
- Different window models
- Evaluation is not straightforward
 - Internal measures of clustering quality (e.g., centroid's radius)
 - External measures of clustering quality (e.g., class labels)
- Specialized approaches for text streams, high-dimensional streams.

- C. Aggarwal, Data Streams: Models and Algorithms, Springer, 2007.
- [AggEtAl03] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu: A framework for clustering evolving data streams. VLDB, 2003.
- [EsterEtAl98] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu, "Incremental Clustering for Mining in a Data Warehousing Environment", VLDB 1998.
- J. Gama, Knowledge Discovery from Data Streams, Chapman and Hall/CRC, 2010.
- [CaoEtAl06] F. Cao, M. Ester, W. Qian, A. Zhou: Density-Based Clustering over an Evolving Data Stream with Noise. SDM, 2006.
- [CheTu07] Y. Chen, L. Tu: Density-Based Clustering for Real-Time Stream Data. KDD, 2007.
- F. Farnstrom, J. Lewis, C. Elkan: Scalability for clustering algorithms revisited. ACM SIGKDD Explorations Newsletter 2(1):51-57, 2000.
- S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O' Callaghan: Clustering data streams: Theory and practice. IEEE TKDE 15(3):515–528, 2003.
- [OCaEtAl02] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani: Streaming-Data Algorithms for High-Quality Clustering. ICDE, 2002.
- www.utdallas.edu/~lkhan/Spring2008G/Charu03.ppt

<u>Task:</u>

Learn from the already classified training data, the rules to classify new objects based on their characteristics.

The result attribute (class variable) is nominal (categorical)

The (batch) classification process

- So far, classification as a batch/ static task
 - The whole training set is given as input to the algorithm for the generation of the classification model.
 - The classification model is static (does not change)
 - When the performance of the model drops, a new model is generated from scratch over a new training set.
- But, in a dynamic environment data change continuously
 - Batch model re-generation is not appropriate/sufficient anymore

- Need for new classification algorithms that
 - have the ability to *incorporate new data*
 - deal with non-stationary data generation processes (concept drift)
 - o Ability to remove obsolete data
 - subject to:
 - o resource constraints (processing time, memory)
 - o single scan of the data (one look, no random access)

- In dynamically changing and non-stationary environments, the data distribution might change over time yielding the phenomenon of concept drift
- Different forms of change:
 - The input data characteristics might change over time
 - The relation between the input data and the target variable might change over time
- Concept drift between t₀ and t₁ can be defined as

 $\exists X: p_{t_0}(X, y) \neq p_{t_1}(X, y).$

- P(X,y): the joint distribution between X and y
- According to the Bayesian Decision Theory:

$$p(y|X) = \frac{p(y)p(X|y)}{p(X)},$$

- So, changes in data can be characterized as changes in:
 - The prior probabilities of the classes p(y)
 - The class conditional probabilities p(X|y).
 - The posterior p(y|X) might change

Example: Evolving class priors

- E.g., evolving class distribution
 - The class distribution might change over time
 - Example: Twitter sentiment dataset
 - o 1.600.000 instances split in 67 chunks of 25.000 tweets per chunk
 - o Balanced dataset (800.000 positive, 800.000 negative tweets)
 - $\circ~$ The distribution of the classes changes over time
 - Dataset online at: *https://sites.google.com/site/twittersentimenthelp/for-researchers*

Evolving class distribution [Sinelnikova12]

Real vs virtual drift

- Real concept drift
 - Refers to changes in p(y|X). Such changes can happen with or without change in p(X).
 - E.g., "I am not interested in tech posts anymore"
- Virtual concept drift
 - If the p(X) changes without affecting p(y|X)

Source: [GamaETAl13]

- Drifts (and shifts)
 - o Drift more associated to gradual changes
 - Shift refers to abrupt changes

Model adaptation

- As data evolve over time, the classifier should be updated to "reflect" the evolving data
 - Update by incorporating new data
 - Update by forgetting obsolete data

The classification boundary gradually drifts from b_1 (at T_1) to b_2 (at T_2) and finally to b_3 (at T_3). (Source: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)

Data stream classifiers

- The batch classification problem:
 - Given a finite training set D={(x,y)}, where y={y₁, y₂, ..., y_k}, |D|=n, find a function y=f(x) that can predict the y value for an unseen instance x
- The data stream classification problem:
 - Given an infinite sequence of pairs of the form (x,y) where y={y₁, y₂, ..., y_k}, find a function y=f(x) that can predict the y value for an unseen instance x
 - the label y of x is not available during the prediction time
 - but it is available shortly after for model update

Supervised scenario

- Example applications:
 - Fraud detection in credit card transactions
 - Churn prediction in a telecommunication company
 - Sentiment classification in the Twitter stream
 - Topic classification in a news aggregation site, e.g. Google news

- ..

(Batch) Decision Trees (DTs)

- Training set: D = {(x,y)}
 - predictive attributes: x=<x₁, x₂, ..., x_d>
 - class attribute: $y=\{y_1, y_2, ..., y_k\}$
- Goal: find y=f(x)
- Decision tree model
 - nodes contain tests on the predictive attributes
 - leaves contain predictions on the class attribute

(Batch) DTs: Selecting the splitting attribute

- Basic algorithm (ID3, Quinlan 1986)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root node

[11+, 2-]

[18+,33-]

[21+, 5-]

[8+, 30-]

(Batch) DTs: Information gain

- Used in ID3
- It uses entropy, a measure of pureness of the data
- The information gain Gain(S,A) of an attribute A relative to a collection of examples S measures the gain reduction in S due to splitting on A:

• Gain measures the expected reduction in entropy due to splitting on A

• The attribute with the higher entropy reduction is chosen

(Batch) DTs: Entropy

- Let S be a collection of positive and negative examples for a binary classification problem, C={+, -}.
- p₊: the percentage of positive examples in S
- p_: the percentage of negative examples in S
- Entropy measures the impurity of S:

$$Entropy(S) = -p_{+} \log_2(p_{+}) - p_{-} \log_2(p_{-})$$

Examples : - Let S: [9+,5-] $Entropy(S) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$ - Let S: [7+,7-] $Entropy(S) = -\frac{7}{14}\log_2(\frac{7}{14}) - \frac{7}{14}\log_2(\frac{7}{14}) = 1$ - Let S: [14+,0-] $Entropy(S) = -\frac{14}{14}\log_2(\frac{14}{14}) - \frac{0}{14}\log_2(\frac{0}{14}) = 0$

in the general case (k-classification problem) Entropy(S) = $\sum_{i=1}^{k} - p_i \log_2(p_i)$

- Entropy = 0, when all members belong to the same class
- Entropy = 1, when there is an equal number of positive and negative examples

• Which attribute to choose next?

- Thus far, in order to decide on which attribute to use for splitting in a node (essential operation for building a DT), we need to have all the training set instances resulting in this node.
- But, in a data stream environment
 - The stream is infinite
 - We cant wait for ever in a node
- Can we make a valid decision based on some data?
 - Hoeffding Tree or Very Fast Decision Tree (VFDT) [DomingosHulten00]

- Idea: In order to pick the best split attribute for a node, it may be sufficient to consider only a small subset of the training examples that pass through that node.
 - No need to look at the whole dataset
 - (which is infinite in case of streams)
- Problem: How many instances are necessary?
 - Use the Hoeffding bound!

The Hoeffding bound

- Consider a real-valued random variable *r* whose range is *R*
 - e.g., for a probability the range is 1
 - for information gain the range is $log_2(c)$, where c is the number of classes
- Suppose we have *n* independent observations of *r* and we compute its mean \overline{r}
- The Hoeffding bound states that with confidence $1-\delta$ the true mean of the variable, μ_r , is at least \bar{r} - ϵ , i.e., $P(\mu_r \ge \bar{r}-\epsilon) = 1-\delta$
- The ε is given by:

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}$$

- This bound holds true regardless of the distribution generating the values, and depends only on the range of values, number of observations and desired confidence.
 - A disadvantage of being so general is that it is more conservative than a distribution-dependent bound

- Let *G()* be the heuristic measure for choosing the split attribute at a node
- After seeing *n* instances at this node, let
 - X_a : be the attribute with the highest observed G()
 - X_b : be the attribute with the second-highest observed G()
- $\overline{\Delta G} = \overline{G}(X_a) \overline{G}(X_b) \ge 0$ the difference between the 2 best attributes
- $\overline{\Delta G}$ is the random variable being estimated by the Hoeffding bound
- Given a desired δ , if $\Delta \overline{G} > \varepsilon$ after seeing n instances at the node
 - the Hoeffding bound guarantees that with probability $1-\delta$, $\Delta G \ge \overline{\Delta G} \varepsilon > 0$.
 - Therefore we can confidently choose X_a for splitting at this node
- Otherwise, i.e., if $\overline{\Delta G} < \varepsilon$, the sample size is not enough for a stable decision.
 - With R and δ fixed, the only variable left to change ϵ is n
 - We need to extend the sample by seeing more instances, until ϵ becomes smaller than $\overline{\Delta G}$

Hoeffding Tree algorithm

- Breaking ties
 - When ≥2 attributes have very similar G's, potentially many examples will be required to decide between them with high confidence.
 - This is presumably wasteful, as it makes little difference which is chosen.
 - Break it by splitting on current best if $\Delta G < \epsilon < \tau$, τ a user-specified threshold
- Grace period (MOA's term)
 - Recomputing G() after each instance is to expensive.
 - A user can specify # instances in a node that must be observed before attempting a new split

Hoeffding Tree overview

- The HT accommodates new instances from the stream
- But, doesn't delete anything (doesn't forget!)
- With time
 - The tree becomes more complex (overfitting is possible)
 - The historical data dominate its decisions (difficult to adapt to changes)

HT over time [Mahmud15]

- Introduces a maximum size (#splitting nodes) bound
- When the limit is reached, the tree is reset
 - Test for the limit, after node's split

- The tree forgets
 - but, due to the reset, it looses all information learned thus far

- Starts maintaining an alternate sub-tree when the performance of a node decays
- When the new sub-tree starts performing better, it replaces the original one
- If original sub-tree keeps performing better, the alternate sub-tree is deleted and the original one is kept

Ensemble of classifiers

- Idea:
 - Instead of a single model, use a combination of models to increase accuracy
 - Combine a series of T learned models, M₁, M₂, ..., M_T, with the aim of creating an improved model M*
 - To predict the class of previously unseen records, aggregate the predictions of the ensemble

Many methods

- Bagging
 - Generate training samples by sampling with replacement (bootstrap)
 - Learn one model at each sample
- Boosting
 - At each round, increase the weights of misclassified examples
- Stacking
 - Apply multiple base learners
 - Meta learner input = base learner predictions

Ensemble of Adaptive Size Hoeffding Trees (ASHT) [BifetEtAl09] 1/2

Bagging using ASHTs of different sizes

- Smaller trees adapt more quickly to changes
- Larger trees perform better during periods with no or little change
- The max allowed size for the nth ASHT tree is twice the max allowed size for the (n-1)th tree.
- Each tree has a weight proportional to the inverse of the square of its error
- The goal is to increase bagging performance by tree diversity

Ensemble of Adaptive Size Hoeffding Trees (ASHT) [BifetEtAl09] 2/2

- All HT, AdaHT, ASHT accommodate new instances from the stream
- HT does not forget
- ASHT forgets by resetting the tree once its size reaches its limit
- AdaHT forgets my replacing sub-trees with new ones
- Bagging ASHT uses varying size trees that respond differently to change

- Extending traditional classification methods for data streams implies that
 - They should accommodate new instances
 - They should forget obsolete instances
- Typically, all methods incorporate new instances from the model
- They differ mainly on how do they forget
 - No forgetting, sliding window forgetting, damped window forgetting,...
- and which part of the model is affected
 - Complete model reset, partial reset, ...
- So far, we focused on fully-supervised learning and we assumed availability of class labels for all stream instances
 - Semi-supervised learning
 - Active learning
- Dealing with class imbalances, rare-classes
- Dealing with dynamic feature spaces

- C. Aggarwal, Data Streams: Models and Algorithms, Springer, 2007.
- J. Gama, Knowledge Discovery from Data Streams, Chapman and Hall/CRC, 2010.
- [GameEtAl13] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia, A Survey on Concept Drift Adaptation, ACM Computing Surveys 46(4), 2014.
- [DomingosHulten00] Pedro Domingos and Geoff Hulten, Mining high-speed data streams, KDD, 2000.
- [BifetEtAl09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard Gavaldà, Improving Adaptive Bagging Methods for Evolving Data Streams, AML, 2009.
- [HultenEtAl01] Geoff Hulten, Laurie Spencer, Pedro Domingos, Mining time-changing data streams, KDD, 2001.
- [WagnerEtAl15] S. Wagner, M. Zimmermann, E. Ntoutsi, M. Spiliopoulou, Ageing-based Multinomial Naive Bayes Classifiers over Opinionated Data Streams. ECML PKDD, 2015.