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CluStream [AggEtAl03]

• The stream clustering process is separated into:

– an online micro-cluster component, that summarizes the stream locally as 
new data arrive over time
o Micro-clusters are stored in disk at snapshots in time that follow a pyramidal 

time frame. 

– an offline macro-cluster component, that clusters these summaries into 
global clusters
o Clustering is performed upon summaries instead of raw data
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CluStream: the micro-cluster summary structure

 Assume that the data stream consists of a set of multi-dimensional 
records X1,…Xn,…, arriving at T1,…,Tn,…: Xi = (xi

1,…,xi
d)

• The micro-cluster summary for a set of d-dimensional points (X1, X2, …, 
Xn) arriving at time points T1, T2, …, Tn is defined as:

CFT = (CF2x , CF1x , CF2t, CF1t, n)

• Easy calculation of basic measures to characterize a cluster:

• Important properties of micro-clusters:
– Incrementality: CFT(C1 U p) = CFT(C1) + p
– Additivity:     CFT(C1 U C2) = CFT(C1) + CFT(C2) 
– Subtractivity:  CFT(C1 - C2) = CFT(C1) - CFT(C2), C1 C2
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CluStream: overview

• A fixed number of q micro-clusters is maintained over time
• Initialize: apply q-Means over initPoints, built a summary for each cluster 
• Online micro-cluster maintenance as a new point p arrives from the stream

– Find the closest micro-cluster clu for the new point p
o If p is within the max-boundary of clu, p is absorbed by clu
o o.w., a new cluster is created with p

– The number of micro-clusters should not exceed q
o Delete most obsolete micro-cluster or merge the two closest ones

• Periodic storage of micro-clusters snapshots into disk
– At different levels of granularity depending upon their recency

• Offline macro-clustering 
– Input: A user defined time horizon h and number of macro-clusters k to be detected
– Locate the valid micro-clusters during h
– Apply k-Means upon these micro-clusters  k macro-clusters
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CluStream: Initialization step

• Initialization
– Done using an offline process in the beginning 
– Wait for the first InitNumber points to arrive
– Apply a standard k-Means algorithm to create q clusters

o For each discovered cluster, assign it a unique ID and create its micro-cluster summary.

• Comments on the choice of q
– much larger than the natural number of clusters
– much smaller than the total number of points arrived
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CluStream: Online step

• A fixed number of q micro-clusters is maintained over time
• Whenever a new point p arrives from the stream

– Compute distance between p and each of the q maintained micro-cluster centroids
– clu the closest micro-cluster to p
– Find the max boundary of clu

o It is defined as a factor of t of clu radius

– If p falls within the maximum boundary of clu
o p is absorbed by clu
o Update clu statistics (incremental property)

– Else, create a new micro-cluster with p, assign it a new ID, initialize its statistics
o To keep the total number of micro-clusters fixed (i.e., q):

• Delete the most obsolete micro-cluster or 
• If its safe based on its time statistics 

• Merge the two closest ones (Additivity property)
• When two micro-clusters are merged, a list of ids is created. This way, we can identify the 

component micro-clusters that comprise a micro-cluster.
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CluStream: Periodic micro-cluster storage

• Micro-clusters are stored as snapshots in time following the pyramidal pattern 
– They are stored at different levels of granularity based on their recency

• Snapshots are classified at different orders/levels i
– For each order i, we store snapshots if the current timestamp t is dived by ai, but 

not by ai+1(to avoid redundancy)
– At most ab+1 snapshots are stored at each order; if a new snapshot arrives the 

oldest one is deleted.

• #orders: loga(t)
• #stored snapshots: (ab+1)loga(t)

Snapshots stored at t = 60,  a=2, b=2
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CluStream: Offline step

• The offline step is applied on demand
• User input: time horizon h, # macro-clusters k to be detected
• Step 1: Find the active micro-clusters during h:

– We exploit the subtractivity property to find the active micro-clusters during h:
o Suppose current time is tc. Let S(tc) be the set of micro-clusters at tc.
o Find the stored snapshot which occurs just before time tc-h. We can always find such a snapshot h’. Let 

S(tc–h’) be the set of micro-clusters.
o For each micro-cluster in the current set S(tc), we find the list of its component micro-cluster ids. For 

each of the list of ids, find the corresponding micro-clusters in S(tc–h’).
o Subtract the CF vectors for the corresponding micro-clusters in S(tc–h’)
o This ensures that the micro-clusters created before the user-specified horizon do not dominate the 

result of clustering process

• Step 2: Apply k-Means over the active micro-clusters in h to derive the k macro-clusters
– Initialization:  centers are not picked up randomly, rather sampled with probability 

proportional to the number of points in a given micro-cluster
– Distance is the centroid distance
– New centers are defined as the weighted centroids of the micro-clusters in that partition
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CluStream: overview

+ CluStream clusters large evolving data streams
+ Views the stream as a changing process over time, rather than clustering the 

whole stream at a time
+ Can characterize clusters over different time horizons in changing environment
+ Provides flexibility to an analyst in a real-time and changing environment

– Fixed number of micro-clusters maintained over time
– Sensitive to outliers/ noise
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Summary: stream clustering

• A very important task given the availability of streams nowadays
• Stream clustering algorithm maintain a valid clustering of the 

evolving stream population over time
• Two generic approaches

– Online maintenance of a final clustering model
– Online summarization of the stream and offline clustering

o Summaries!

• Different window models
• Evaluation is not straightforward 

− Internal measures of clustering quality (e.g., centroid’s radius)
− External measures of clustering quality (e.g., class labels) 

• Specialized approaches for text streams, high-dimensional 
streams.
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Resources

• C. Aggarwal,  Data Streams: Models and Algorithms, Springer, 2007.
• [AggEtAl03] C. C. Aggarwal, J. Han, J. Wang,  P. S. Yu: A framework for clustering evolving data 

streams. VLDB, 2003.
• [EsterEtAl98] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu, „Incremental Clustering for 

Mining in a Data Warehousing Environment”, VLDB 1998.
• J. Gama, Knowledge Discovery from Data Streams, Chapman and Hall/CRC, 2010.
• [CaoEtAl06] F. Cao, M. Ester, W. Qian, A. Zhou: Density-Based Clustering over an Evolving Data 

Stream with Noise. SDM, 2006.
• [CheTu07] Y. Chen, L. Tu: Density-Based Clustering for Real-Time Stream Data. KDD, 2007.
• F. Farnstrom, J. Lewis, C. Elkan: Scalability for clustering algorithms revisited. ACM SIGKDD 

Explorations Newsletter 2(1):51-57, 2000.
• S. Guha, A. Meyerson, N. Mishra, R. Motwani, L. O’ Callaghan: Clustering data streams: Theory and 

practice. IEEE TKDE 15(3):515–528, 2003.
• [OCaEtAl02] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani: Streaming-Data 

Algorithms for High-Quality Clustering. ICDE, 2002.
• www.utdallas.edu/~lkhan/Spring2008G/Charu03.ppt
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Classification

Screw
Nails
Paper clips

Task:
Learn from the already classified training data, the rules to classify new 
objects based on their characteristics.

The result attribute (class variable) is nominal (categorical)

Training data

New object
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The (batch) classification process

IF rank = ‘professor’ OR years > 6 
THEN tenured = ‘yes’ 

Classifier
(Model)

IF (rank!=’professor’) AND (years < 
6) THEN tenured = ‘no’ 

Training
data

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Class attributePredictive attributes

Unseen data

NAME RANK YEARS TENURED
Jeff Professor 4 ?

Patrick Assistant Professor 8 ?

Maria Assistant Professor 2 ?

Tenured?

?

?

Tenured?

Tenured?

Model construction

Prediction
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Stream vs batch classification 1/2

• So far, classification as a batch/ static task
– The whole training set is given as input to the algorithm for the generation 

of the classification model.
– The classification model is static (does not change)
– When the performance of the model drops, a new model is generated from 

scratch over a new training set.

• But, in a dynamic environment data change continuously 
– Batch model re-generation is not appropriate/sufficient anymore
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Stream vs batch classification 2/2

• Need for new classification algorithms that
– have the ability to incorporate new data
– deal with non-stationary data generation processes  (concept drift)

o Ability to remove obsolete data
– subject to:

o resource constraints (processing time, memory)
o single scan of the data (one look, no random access)
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Non-stationary data distribution  Concept drift

• In dynamically changing and non-stationary environments, the data distribution 
might change over time yielding the phenomenon of concept drift

• Different forms of change:
– The input data characteristics might change over time
– The relation between the input data and the target variable might change over time

• Concept drift between t0 and t1 can be defined as

– P(X,y): the joint distribution between X and y

• According to the Bayesian Decision Theory:
• So, changes in data can be characterized as changes in:

– The prior probabilities of the classes p(y)
– The class conditional probabilities p(X|y).
– The posterior p(y|X) might change 
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Example: Evolving class priors 

• E.g., evolving class distribution
– The class distribution might change over time
– Example: Twitter sentiment dataset

o 1.600.000 instances split in 67 chunks of 25.000 tweets per chunk
o Balanced dataset (800.000 positive, 800.000 negative tweets)
o The distribution of the classes changes over time
o Dataset online at: https://sites.google.com/site/twittersentimenthelp/for-researchers

Evolving class distribution [Sinelnikova12]

Big Data Management and Analytics 17



DATABASE
SYSTEMS
GROUP

Real vs virtual drift

• Real concept drift
– Refers to changes in p(y|X). Such changes can happen with or without change in 

p(X).
– E.g., “I am not interested in  tech posts anymore”

• Virtual concept drift
– If the p(X) changes without affecting p(y|X)

– Drifts (and shifts)
o Drift more associated to gradual changes
o Shift refers to abrupt changes

Source: [GamaETAl13]
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Model adaptation 

• As data evolve over time, the classifier should be updated to “reflect” the 
evolving data

– Update by incorporating new data
– Update by forgetting obsolete data

The classification boundary gradually drifts from b1 (at T1) to b2 (at T2) and finally to b3 (at T3).
(Source: A framework for application-driven classification of data streams, Zhang et al, Journal Neurocomputing 2012)
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Data stream classifiers

• The batch classification problem:
– Given a finite training set D={(x,y)} , where y={y1, y2, …, yk}, |D|=n, find a function 

y=f(x) that can predict the y value for an unseen instance x

• The data stream classification problem: 
– Given an infinite sequence of pairs of the form (x,y) where y={y1, y2, …, yk}, find a 

function y=f(x) that can predict the y value for an unseen instance x
• the label y of x is not available during the prediction time 
• but it is available shortly after for model update

• Example applications:
– Fraud detection in credit card transactions
– Churn prediction in a telecommunication company
– Sentiment classification in the Twitter stream
– Topic classification in a news aggregation site, e.g. Google news
– …

Supervised scenario
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(Batch) Decision Trees (DTs)

• Training set: D = {(x,y)}
– predictive attributes: x=<x1, x2, …, xd>
– class attribute: y={y1, y2, …, yk}

• Goal: find y=f(x)
• Decision tree model

– nodes contain tests on the predictive attributes
– leaves contain predictions on the class attribute

Training set
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(Batch) DTs: Selecting the splitting attribute

• Basic algorithm (ID3, Quinlan 1986)
– Tree is constructed in a top-down recursive divide-and-conquer manner
– At start, all the training examples are at the root node

– But, which attribute is the best?

Goal: select the most “useful” attribute 
• i.e., the one resulting in the purest 

partitioning

Attribute selection measures:
• Information gain
• Gain ratio
• Gini index

(check Lecture 4, KDD I)
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(Batch) DTs: Information gain

• Used in ID3
• It uses entropy, a measure of pureness of the data
• The information gain Gain(S,A) of an attribute A relative to a collection of 

examples S measures the gain reduction in S due to splitting on A:

• Gain measures the expected reduction in entropy due to splitting on A

• The attribute with the higher entropy reduction is chosen

∑
∈

−=
)(

)(
||
||)(),(

AValuesv
v

v SEntropy
S
SSEntropyASGain

Before splitting After splitting on A
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(Batch) DTs: Entropy

• Let S be a collection of positive and negative examples for a binary 
classification problem, C={+, -}.

• p+: the percentage of positive examples in S
• p-: the percentage of negative examples in S
• Entropy measures the impurity of S:

• Examples :
– Let S: [9+,5-] 

– Let S: [7+,7-] 

– Let S: [14+,0-] 

• Entropy = 0, when all members belong to the same class
• Entropy = 1, when there is an equal number of positive and negative examples
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(Batch) DTs: Information gain example

• Which attribute to choose next?
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From batch to stream DT induction

• Thus far, in order to decide on which attribute to use for splitting 
in a node (essential operation for building a DT), we need to have 
all the training set instances resulting in this node.

• But, in a data stream environment
– The stream is infinite 
– We cant wait for ever in a node

• Can we make a valid decision based on some data?
– Hoeffding Tree or Very Fast Decision Tree (VFDT) [DomingosHulten00]
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Hoeffding Tree [DomingosHulten00]

• Idea: In order to pick the best split attribute for a node, it may be 
sufficient to consider only a small subset of the training examples 
that pass through that node.
– No need to look at the whole dataset 
– (which is infinite in case of streams)

• Problem: How many instances are necessary?
– Use the Hoeffding bound!

Big Data Management and Analytics 27



DATABASE
SYSTEMS
GROUP

The Hoeffding bound

• Consider a real-valued random variable r whose range is R
– e.g., for a probability the range is 1 
– for information gain the range is log2(c), where c is the number of classes

• Suppose we have n independent observations of r and we compute its mean r
• The Hoeffding bound states that with confidence 1-δ the true mean of the 

variable, μr, is at least r-ε, i.e., P(μr ≥r-ε) = 1-δ
• The ε is given by:

• This bound holds true regardless of the distribution generating the values, and 
depends only on the range of values, number of observations and desired 
confidence. 

– A disadvantage of being so general is that it is more conservative than a 
distribution-dependent bound

n
R

2
)/1ln(2 δε =
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Using the Hoeffding bound to select the best split 
at a node

• Let G() be the heuristic measure for choosing the split attribute at a node
• After seeing n instances at this node, let

– Xa : be the attribute with the highest observed G()
– Xb : be the attribute with the second-highest observed G()

• ∆G=G(Xa) – G(Xb) ≥0 the difference between the 2 best attributes
• ΔG is the random variable being estimated by the Hoeffding bound
• Given a desired δ, if ΔG>ε after seeing n instances at the node

– the Hoeffding bound guarantees that with probability 1-δ, ΔG ≥ ΔG-ε>0. 
– Therefore we can confidently choose Xa for splitting at this node

• Otherwise, i.e., if ∆G < ε, the sample size is not enough for a stable decision. 
– With R and δ fixed, the only variable left to change ε is n
– We need to extend the sample by seeing more instances, until ε becomes smaller 

than ΔG
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Hoeffding Tree algorithm

Those needed by the  heuristic 
evaluation function G()

The evaluation of G() after each 
instance is very expensive.
 Evaluate G() only after Nmin
instances have been observed 
since the last evaluation.

leaf(#examples)mod Nmin=0
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Hoeffding tree algorithm more details

• Breaking ties
– When ≥2 attributes have very similar G's, potentially many examples will be 

required to decide between them with high confidence.
– This is presumably wasteful, as it makes little difference which is chosen. 
– Break it by splitting on current best if ΔG<ε<τ, τ a user-specified threshold

• Grace period (MOA’s term)
– Recomputing G() after each instance is to expensive. 
– A user can specify # instances in a node that must be observed before 

attempting a new split 
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Hoeffding Tree overview

• The HT accommodates new instances from the stream
• But, doesn’t delete anything (doesn’t  forget!)
• With time

– The tree becomes more complex (overfitting is possible) 
– The historical data dominate its decisions (difficult to adapt to changes)

t0 t1 t2 t3 tn

t0 t2t1 tnt3

Decision boundary

HT over time [Mahmud15]
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Adaptive Size Hoeffding Tree (ASHT) [BifetEtAl09]

• Introduces a maximum size (#splitting nodes) bound 
• When the limit is reached, the tree is reset

– Test for the limit, after node’s split

• The tree forgets
– but, due to the reset, it looses all information learned thus far

t0 t1 t2 t3 t4

Reset

Tree with maximum size

t0 t2t1 t4t3

Decision boundary

ASHT over time [Mahmud15]
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Concept-Adapting Hoeffding Tree [HultenEtAl01]

• Starts maintaining an alternate sub-tree when the performance of a node 
decays

• When the new sub-tree starts performing better, it replaces the original one
• If original sub-tree keeps performing better, the alternate sub-tree is deleted 

and the original one is kept

t0 t1 t2 t3 t4

x

Error increasing nodes
Alternate branch

t0 t2t1 t4t3

Performance degrading Keep original Switch to alternate

AdaHT over time [Mahmud15]
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Ensemble of classifiers

• Idea:
– Instead of a single model, use a combination of models to increase 

accuracy
– Combine a series of T learned models, M1, M2, …, MT, with the aim of 

creating an improved model M*
– To predict the class of previously unseen records, aggregate the predictions 

of the ensemble
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Many methods

• Bagging
– Generate training samples by sampling with replacement (bootstrap)
– Learn one model at each sample

• Boosting
– At each round, increase the weights of misclassified  examples

• Stacking
– Apply multiple base learners 
– Meta learner input = base learner predictions 
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Ensemble of Adaptive Size Hoeffding Trees 
(ASHT) [BifetEtAl09] 1/2 

• Bagging using ASHTs of different sizes

– Smaller trees adapt  more quickly to changes
– Larger trees perform better during periods with no or little change
– The max allowed size for the nth ASHT tree is twice the max allowed 

size for the (n-1)th tree.
– Each tree has a weight proportional to the inverse of the square of its 

error
– The goal is to increase bagging performance by tree diversity

T1

T4
T3

T2
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Ensemble of Adaptive Size Hoeffding Trees 
(ASHT) [BifetEtAl09] 2/2

Tree1

Tree2
Tree3

1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0
time

Tim
e

Tree3 Tree2 Tree1

reset

reset

reset

reset

t1

t2

t3

t4
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Hoeffding Tree family overview

• All HT, AdaHT, ASHT accommodate new instances from the 
stream

• HT does not forget 
• ASHT forgets by resetting the tree once its size reaches its limit
• AdaHT forgets my replacing sub-trees with new ones
• Bagging ASHT uses varying size trees that respond differently to 

change
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Data stream classification: overview

• Extending traditional classification methods for data streams implies that
– They should accommodate new instances
– They should forget obsolete instances

• Typically, all methods incorporate new instances from the model
• They differ mainly on how do they forget

– No forgetting, sliding window forgetting, damped window forgetting,…

• and which part of the model is affected
– Complete model reset, partial reset, …

• So far, we focused on fully-supervised learning and we assumed availability of 
class labels for all stream instances

– Semi-supervised learning
– Active learning

• Dealing with class imbalances, rare-classes
• Dealing with dynamic feature spaces
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Resources

• C. Aggarwal,  Data Streams: Models and Algorithms, Springer, 2007.
• J. Gama, Knowledge Discovery from Data Streams, Chapman and Hall/CRC, 2010.
• [GameEtAl13] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and 

Abdelhamid Bouchachia, A Survey on Concept Drift Adaptation, ACM Computing 
Surveys 46(4), 2014.

• [DomingosHulten00] Pedro Domingos and Geoff Hulten, Mining high-speed data 
streams, KDD, 2000.

• [BifetEtAl09] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Ricard Gavaldà, Improving 
Adaptive Bagging Methods for Evolving Data Streams, AML, 2009.

• [HultenEtAl01] Geoff Hulten, Laurie Spencer, Pedro Domingos, Mining time-changing 
data streams, KDD, 2001.

• [WagnerEtAl15] S. Wagner, M. Zimmermann, E. Ntoutsi, M. Spiliopoulou, Ageing-based 
Multinomial Naive Bayes Classifiers over Opinionated Data Streams. ECML PKDD, 2015.
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