
Apache Flink- A System for Batch and
Realtime Stream Processing

Lecture Notes
Winter semester 2016 / 2017

Ludwig-Maximilians-University Munich
© Prof Dr. Matthias Schubert 2016

DATABASE
SYSTEMS
GROUP

Introduction to Apache Flink

• Apache Flink is an open source

Stream Processing Framework

• Low latency

• High throughput

• Stateful Operators

• Distributed Execution

• Developed at the Apache Software Foundation

• 1.0.0 released in March 2016, used in production

DATABASE
SYSTEMS
GROUP

Flink Software Stack

DATABASE
SYSTEMS
GROUP

System Legacy

Map
Reduce
OSDI’04

Apache
Hadoop 1

Dryad,
Nephele

EusoSys’07
Apache Tez

PACTs
SOCC’10
VLDB’12

Apache Flink

RDDs
HotCloud 10,

NSDO’12

Apache
Spark

DATABASE
SYSTEMS
GROUP

Architecture

...

Ac
to

r S
ys

te
m

Flink Client

Code using API

Ac
to

r S
ys

te
m

Graph Builder & Optimizer

Ac
to

r S
ys

te
m

Scheduler

Checkpoint Coordinator

dataflow
graph

Job Manager

Memory/IO Manager

Network Manager

task
slot

task
slot

task
slot

Ac
to

r S
ys

te
m

Memory/IO Manager

Network Manager

task
slot

task
slot

task
slot

Dataflow Graph

• task status
• heartbeats
• statistics
• trigger checkpoints

data
streams

DATABASE
SYSTEMS
GROUP

Dataflow Graphs

• all APIs (e.g. DataSet, DataStream,)
compile to Dataflow Graphs

• (stateful) operators (filter, joins,..)
= nodes

• data streams = links

• in parallel processing split into:
• operators are executed in subtasks
• stream partitions

• streams may p2p, broadcast, merge,
fan-out, repartitions

Src1 Src2
stateful
operator

Snk1

Snk1

IS1 IS2

OP1

IS2

intermediate data
stream

DATABASE
SYSTEMS
GROUP

Intermediate Data Streams

• blocking data exchange: output is generated, stored and then exchanged with
the consumer. (->complete intermediate results of a stream must be stored)

a
b
a
a
b
a

(a,1)
(b,1)

(a,1)
(a,1)

(b,1)
(a,1)

map shuffle reduce

(a,1)
(b,1)

a
b
a
a
b
a

(a,1)
(b,1)
(a,1)
(a,1)
(b,1)
(a,1)

(a,{1,1,1,1})
(b,{1,1})

map shuffle reduce

(a,4)
(b,2)

(a,{1})
(b,{1})

(a,{1,1}) (a,2)
(a,{1,1,1}) (a,3)

(b,{1,1}) (b,2)
(a,{1,1,1,1}) (a,4)

• core abstraction for data exchange
• may or may not be materialized on disk
• pipelined execution: data is continuously produced,

buffered and consumed

a
b
a
a
b
a

DATABASE
SYSTEMS
GROUP

Latency and Throughput

Data exchange based on buffers:
• data record ready => one/many buffers
• buffer is sent to consumer when it is full / time out

⇒ the large buffers increase throughput (less overhead)
⇒ low time out enable low latencies

(real time processing = data is processed within a guaranteed time limit)

0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

0 5 10 50 100
Buffer timeout (milliseconds)

Th
ro

ug
hp

ut
(A

ve
ra

ge
in

m
ill

io
ns

of
ev

en
ts

/s
ec

)

La
te

nc
y

99
th

-p
er

ce
nt

ile
in

m
ill

ise
co

nd
s

DATABASE
SYSTEMS
GROUP

Control Events and Fault Tolerance

• Examplary types of control events:
• check point barrier: coordinate checkpoints by dividing stream into

pre-checkpoint and post-checkpoint
• watermarks: signaling the progress of event-time within the stream

partition
• iteration barriers: signals end of a superstep for iterative processing

• Control events are injected into the stream and provide operator nodes
the position in the data set.

• reliable execution with exactly once
• consistency is guaranteed (no availability on all nodes)
• check-pointing and partial re-execution
• based on the assumption that data source is persistent and replayable

(e.g. files, Apache Kafka)
• regular snapshots to prevent unbounded recomputation

DATABASE
SYSTEMS
GROUP

Asynchronous Barrier Snapshotting

• barrier corresponds to a logical time => separate the stream to mark the
snapshotted part

• barriers are injected into the stream
• wait until all barriers from input are received
• write out state to durable storage (=disk)
• checkpoint barriers are sent from upstream to downstream after

checkpoint
• recovery: restart computation from the last successful snapshot

time

data stream

t1 barrier t2 barrier t3 barrier
snap shotting snap shotting

snap t1 snap t2

DATABASE
SYSTEMS
GROUP

Iterative Data Flows

• Iterative algorithms are often employed for Data Mining, Machine Learning
or Graph processing

• in other cloud-based computation frameworks (e.g. Hadoop, Spark):
• run a loop in the client program
• in each iteration a parallel execution is started

(compare to k-Means on Hadoop)
• Flink provides an integrated iteration processing
• iteration step = special operators contain execution graphs
• iteration head and iteration tail are connected via feedback stream

(handles what to keep between iterations)

Iteration Step

Src SNK

feedback stream
loop control
event

data record
outside loop

data record in
loop transit

DATABASE
SYSTEMS
GROUP

Stream Processing with Dataflows

• Flink manages time: out-of-order events, windows, user-defined states
• two notions of time:

• event time: time when the event is originated (e.g. timestamp)
• processing time: wall-clock time of processing the event at worker X

• Skew between both is possible in distributed environments:
objects may arrive out of order with respect to event time

• low watermarks: mark global progress measure
(e.g. all events lower than timestamp t have entered an operator)

• Watermarks originate at the sources of the graph
• operators decide how to react
• operators with multiple inputs forward minimal watermarks

DATABASE
SYSTEMS
GROUP

Stateful Streams Processing

• stateless operators: operator works independent for all inputs
• for example simple map function in word count : lambda x: (x,1)
• no memory, not depending on the input order

• stateful operators: operator has an internal state
• for example: regression function: a⋅x+t.

(a and t are trained over the stream of input data)
• the state stores models parameters

• states are incorporated into the API by :
• operator interfaces registering local variables
• operator-state abstractions for declaring portioned key-value states as there

associated operations
• states can be checkpointed

DATABASE
SYSTEMS
GROUP

Stream Windows

• Stateful operator configured via:
• assigner: assigns each record to one/many logical windows
• trigger(optional): states the time an operation on the windows is performed
• evictor(optional): defines which records to retain in each window

• Predefined operator available e.g. sliding time window
• user-defined functions allow flexible customizing

Examples:
stream
.window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS))
.trigger(EventTimeTrigger.create())

stream
.window(GlobalWindow.create())
.trigger(Count.of(1000))
.evict(Count.of(100))

DATABASE
SYSTEMS
GROUP

Batch Processing

• batch processing can be considered as special case of streams
(bounded streams)

• Syntax for batch processing can be defined in a simpler way
• additional options for optimizing the processing might be possible

⇒ Flink offers additional functionality for batch processing
⇒ Blocked execution: break up large computations to isolated stages
⇒ No periodic snapshotting when overhead is large

instead use last materialized intermediate stream
⇒ blocking is implemented as an operator explicitly waiting until the

complete input is consumed => runtime environment does not distinguish
⇒ disk spill-off might become necessary
⇒ Flink provides a dedicated DataSet API with familiar functions e.g. map
⇒ Query optimization is used to transform API programs into efficient graphs

DATABASE
SYSTEMS
GROUP

Query Optimization

• query optimizer is built on techniques from parallel databases:
• plan equivalence
• cost modeling
• interesting-property propagation

• problem the operators have no predefined semantics
(user defined functions!)

• cardinality and cost-estimation are hard to perform
for the same reasons

• support execution strategies such as:
• repartition and broadcast
• sort-based grouping
• sort- and hash-based joins

• Optimizer evaluated physical plans by interesting property propagation
• costs include disk I/O and CPU cost
• to handle user defined functions, hints are allowed

DATABASE
SYSTEMS
GROUP

Memory Management
• Flink serializes data into memory segments instead of using the JVM heap
• operations work as much as possible on the binary data

=> reduces the overhead for serialization /deserialization
• for arbitrary objects, Flink uses type inference and custom serialization
• Binary representation and storing data off-heap reduces garbage collection

overhead
• spilling data to disk is still fallback in case

public class WC {
public String word;
public int count;

}

empty
page

Pool of Memory Pages

JV
M

H
ea

p

Flink Managed
Heap

Network Buffers

Unmanaged
Heap

DATABASE
SYSTEMS
GROUP

Batch Iterations

• iterative methods are common in data analytics:
• parallel gradient descent
• expectation maximization

• Parallelization methods for iterative methods
• Bulk Synchronous Parallel (BSP)
• Stale Synchronous Parallel (SSP)

• Flink allows various iteration methods by providing iteration control
events

• For example: in BSP mark begin and end of supersteps
• includes novel optimization concepts:

• delta iterations: exploit sparse computational dependencies

red.

map join

join

DATABASE
SYSTEMS
GROUP

API Examples

Word Count in Java

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
.map (l ‐> l.split(“\\W+”))
.flatMap ((String[] tokens,
Collector<Tuple2<String, Integer>> out) ‐> { Arrays.stream(tokens)
.filter(t ‐> t.length() > 0)
.forEach(t ‐> out.collect(new Tuple2<>(t, 1)));

})
.groupBy(0)
.sum(1);
env.execute("Word Count Example");

DATABASE
SYSTEMS
GROUP

API Examples

k-Means in Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<Point> points = getPointDataSet(params, env);
DataSet<Centroid> centroids = getCentroidDataSet(params, env);

IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations",
10));

DataSet<Centroid> newCentroids = points.map(new
SelectNearestCenter()).withBroadcastSet(loop, "centroids").map(new CountAppender())
.groupBy(0).reduce(new CentroidAccumulator())
.map(new CentroidAverager());

DataSet<Centroid> finalCentroids = loop.closeWith(newCentroids);

DataSet<Tuple2<Integer, Point>> clusteredPoints = points
.map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids");

DATABASE
SYSTEMS
GROUP

References

• https://flink.apache.org/
• Carbone et. Al: Apache Flink: Stream and Batch Processing in a Sinlge Engine,

IEEE Bulletin of the Technical Committee on Data Engineering, 2015
• Christian Boden: Introduction to Apache Flink,

Technologie-Workshop „Big Data“ FZI Karlsruhe, 22. Juni 2015

https://flink.apache.org/

	Foliennummer 1
	Introduction to Apache Flink
	Flink Software Stack
	System Legacy
	Architecture
	Dataflow Graphs
	Intermediate Data Streams
	Latency and Throughput
	Control Events and Fault Tolerance
	Asynchronous Barrier Snapshotting
	Iterative Data Flows
	Stream Processing with Dataflows
	Stateful Streams Processing
	Stream Windows
	Batch Processing
	Query Optimization
	Memory Management
	Batch Iterations
	API Examples
	API Examples
	References

