Apache Flink- A System for Batch and Realtime Stream Processing

Lecture Notes

Winter semester 2016 / 2017 Ludwig-Maximilians-University Munich © Prof Dr. Matthias Schubert 2016

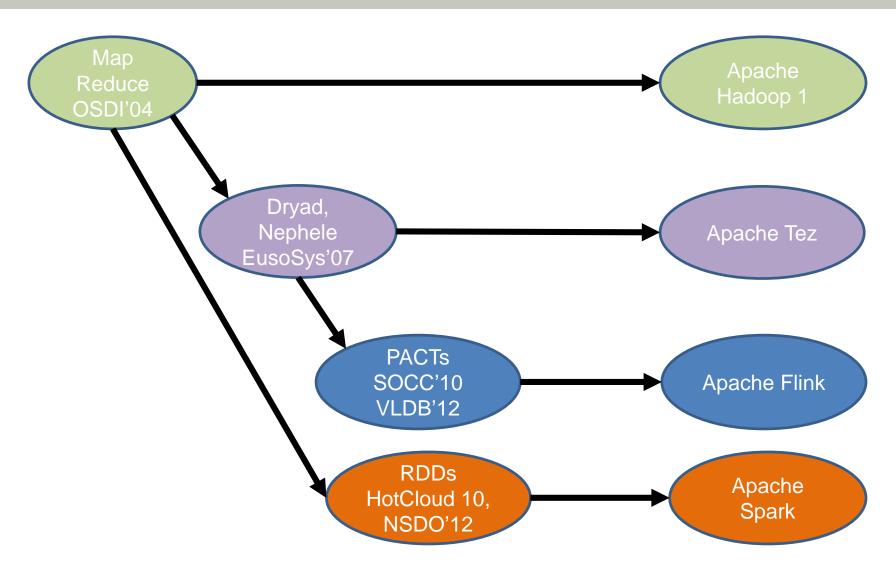
Introduction to Apache Flink

- Apache Flink is an open source
 Stream Processing Framework
- Low latency
- High throughput
- Stateful Operators
- Distributed Execution
- Developed at the Apache Software Foundation
- 1.0.0 released in March 2016, used in production

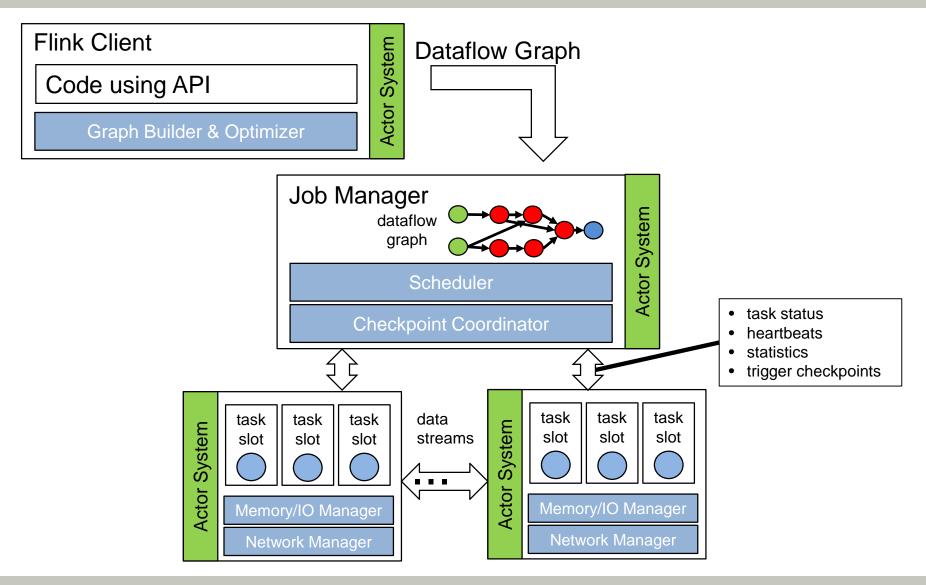
Flink Software Stack

APIs & Libraries	CEP Event Processing	Table Relational			FlinkML Machine Learning	Gelly Graph Processing	Table Relational	
	DataStream API Stream Processing				DataSet API Batch Processing			
Core	Runtime Distributed Streaming Dataflow							
Deploy	Local Single JVM		Cluster Standalone, YARN			Cloud GCE, EC2		

System Legacy

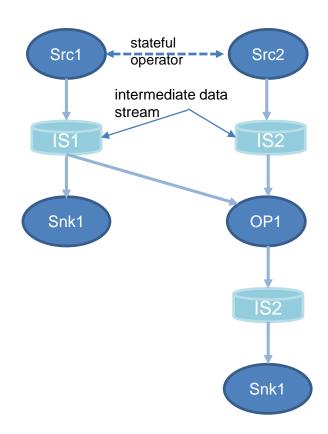


Architecture



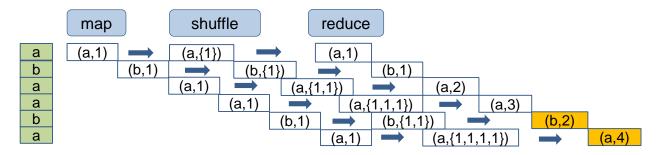
Dataflow Graphs

- all APIs (e.g. DataSet, DataStream,) compile to Dataflow Graphs
- (stateful) operators (filter, joins,..)= nodes
- data streams = links
- in parallel processing split into:
 - operators are executed in subtasks
 - stream partitions
- streams may p2p, broadcast, merge, fan-out, repartitions

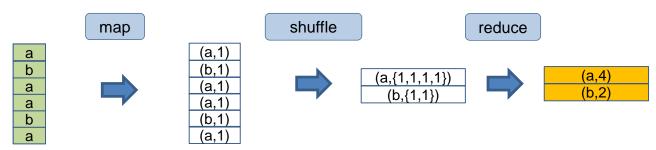


Intermediate Data Streams

- core abstraction for data exchange
- may or may not be materialized on disk
- pipelined execution: data is continuously produced, buffered and consumed



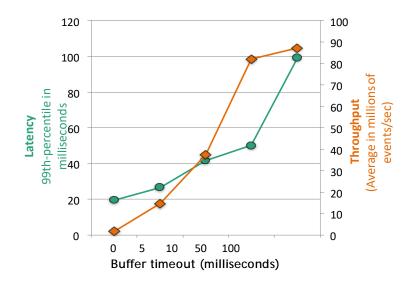
 blocking data exchange: output is generated, stored and then exchanged with the consumer. (->complete intermediate results of a stream must be stored)



Latency and Throughput

Data exchange based on buffers:

- data record ready => one/many buffers
- buffer is sent to consumer when it is full / time out
- ⇒ the large buffers increase throughput (less overhead)
- ⇒ low time out enable low latencies
 (real time processing = data is processed within a guaranteed time limit)

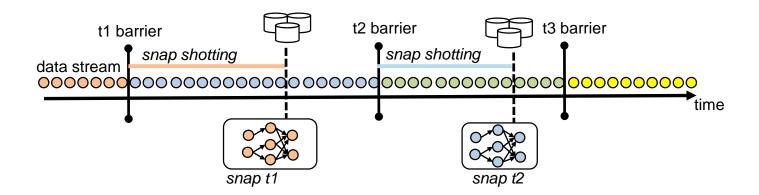


Control Events and Fault Tolerance

- Examplary types of control events:
 - check point barrier: coordinate checkpoints by dividing stream into pre-checkpoint and post-checkpoint
 - watermarks: signaling the progress of event-time within the stream partition
 - iteration barriers: signals end of a superstep for iterative processing
- Control events are **injected into the stream** and provide operator nodes the position in the data set.
- reliable execution with exactly once
- consistency is guaranteed (no availability on all nodes)
- check-pointing and partial re-execution
- based on the assumption that data source is persistent and replayable (e.g. files, Apache Kafka)
- regular snapshots to prevent unbounded recomputation

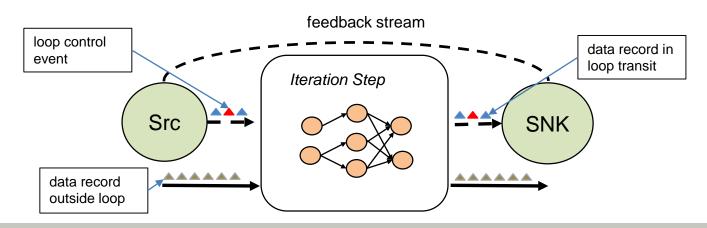
Asynchronous Barrier Snapshotting

- barrier corresponds to a logical time => separate the stream to mark the snapshotted part
- barriers are injected into the stream
- wait until all barriers from input are received
- write out state to durable storage (=disk)
- checkpoint barriers are sent from upstream to downstream after checkpoint
- recovery: restart computation from the last successful snapshot



Iterative Data Flows

- Iterative algorithms are often employed for Data Mining, Machine Learning or Graph processing
- in other cloud-based computation frameworks (e.g. Hadoop, Spark):
 - run a loop in the client program
 - in each iteration a parallel execution is started (compare to k-Means on Hadoop)
- Flink provides an integrated iteration processing
- iteration step = special operators contain execution graphs
- iteration head and iteration tail are connected via feedback stream (handles what to keep between iterations)



Stream Processing with Dataflows

- Flink manages time: out-of-order events, windows, user-defined states
- two notions of time:
 - event time: time when the event is originated (e.g. timestamp)
 - processing time: wall-clock time of processing the event at worker X
- Skew between both is possible in distributed environments: objects may arrive out of order with respect to event time
- low watermarks: mark global progress measure
 (e.g. all events lower than timestamp t have entered an operator)
- Watermarks originate at the sources of the graph
- operators decide how to react
- operators with multiple inputs forward minimal watermarks

Stateful Streams Processing

- stateless operators: operator works independent for all inputs
 - for example simple map function in word count : lambda x: (x,1)
 - no memory, not depending on the input order
- stateful operators: operator has an internal state
 - for example: regression function: a·x+t.
 (a and t are trained over the stream of input data)
 - the state stores models parameters
- states are incorporated into the API by :
 - operator interfaces registering local variables
 - operator-state abstractions for declaring portioned key-value states as there associated operations
- states can be checkpointed

Stream Windows

- Stateful operator configured via:
 - assigner: assigns each record to one/many logical windows
 - trigger(optional): states the time an operation on the windows is performed
 - evictor(optional): defines which records to retain in each window
- Predefined operator available e.g. sliding time window
- user-defined functions allow flexible customizing

Examples:

```
stream
.window(SlidingTimeWindows.of(Time.of(6, SECONDS), Time.of(2, SECONDS))
.trigger(EventTimeTrigger.create())
stream
.window(GlobalWindow.create())
.trigger(Count.of(1000))
.evict(Count.of(100))
```


Batch Processing

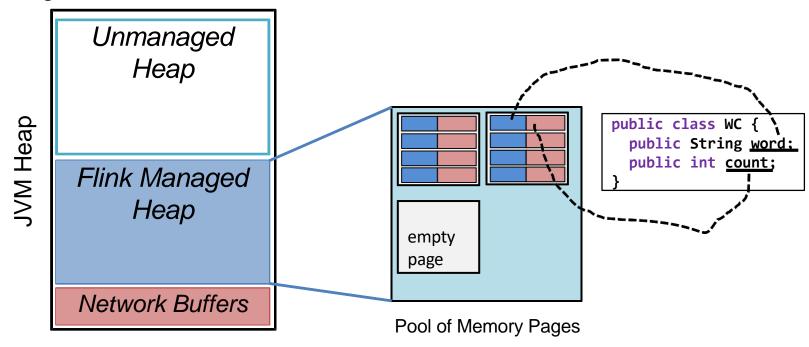
- batch processing can be considered as special case of streams (bounded streams)
- Syntax for batch processing can be defined in a simpler way
- additional options for optimizing the processing might be possible
- ⇒ Flink offers additional functionality for batch processing
- ⇒ Blocked execution: break up large computations to isolated stages
- ⇒ No periodic snapshotting when overhead is large instead use last materialized intermediate stream
- ⇒ blocking is implemented as an operator explicitly waiting until the complete input is consumed => runtime environment does not distinguish
- ⇒ disk spill-off might become necessary
- ⇒ Flink provides a dedicated DataSet API with familiar functions e.g. map
- ⇒ Query optimization is used to transform API programs into efficient graphs

Query Optimization

- query optimizer is built on techniques from parallel databases:
 - plan equivalence
 - cost modeling
 - interesting-property propagation
- problem the operators have no predefined semantics (user defined functions!)
- cardinality and cost-estimation are hard to perform for the same reasons
- support execution strategies such as:
 - repartition and broadcast
 - sort-based grouping
 - sort- and hash-based joins
- Optimizer evaluated physical plans by interesting property propagation
- costs include disk I/O and CPU cost
- to handle user defined functions, hints are allowed

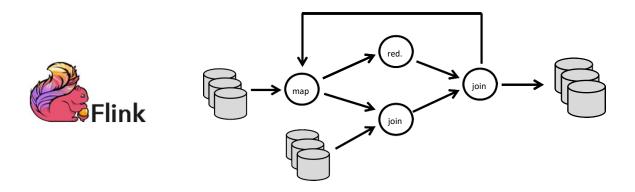
Memory Management

- Flink serializes data into memory segments instead of using the JVM heap
- operations work as much as possible on the binary data
 reduces the overhead for serialization /deserialization
- for arbitrary objects, Flink uses type inference and custom serialization
- Binary representation and storing data off-heap reduces garbage collection overhead
- spilling data to disk is still fallback in case



Batch Iterations

- iterative methods are common in data analytics:
 - parallel gradient descent
 - expectation maximization
- Parallelization methods for iterative methods
 - Bulk Synchronous Parallel (BSP)
 - Stale Synchronous Parallel (SSP)
- Flink allows various iteration methods by providing iteration control events
- For example: in BSP mark begin and end of supersteps
- includes novel optimization concepts:
 - delta iterations: exploit sparse computational dependencies



API Examples

Word Count in Java

```
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<String> text = readTextFile (input);
DataSet<Tuple2<String, Integer>> counts= text
.map (1 -> l.split("\\\\\\\\\\\\'\\\))
.flatMap ((String[] tokens,
Collector<Tuple2<String, Integer>> out) -> { Arrays.stream(tokens)}
.filter(t -> t.length() > 0)
.forEach(t -> out.collect(new Tuple2<>(t, 1)));
        })
.groupBy(0)
.sum(1);
env.execute("Word Count Example");
```


API Examples

k-Means in Java

```
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Point> points = getPointDataSet(params, env);
DataSet < Centroid > centroids = getCentroidDataSet(params, env);
IterativeDataSet<Centroid> loop = centroids.iterate(params.getInt("iterations",
10));
DataSet < Centroid > newCentroids = points.map(new
SelectNearestCenter()).withBroadcastSet(loop, "centroids").map(new CountAppender())
.groupBy(0).reduce(new CentroidAccumulator())
.map(new CentroidAverager());
DataSet < Centroid > finalCentroids = loop.closeWith(newCentroids);
DataSet<Tuple2<Integer, Point>> clusteredPoints = points
.map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids");
```


References

- https://flink.apache.org/
- Carbone et. Al: Apache Flink: Stream and Batch Processing in a Sinlge Engine, IEEE Bulletin of the Technical Committee on Data Engineering, 2015
- Christian Boden: Introduction to Apache Flink,
 Technologie-Workshop "Big Data" FZI Karlsruhe, 22. Juni 2015