Chapter 5: Stream Processing
Today’s Lesson

• Data Streams & Data Stream Management System

• Data Stream Models
 • Insert-Only
 • Insert-Delete
 • Additive

• Streaming Methods
 • Sliding Windows & Ageing
 • Data Synopsis

• Stream Processing – Concepts & Tools
 • Micro-Batching with Apache Spark Streaming
 • Real-time Stream Processing with Apache Storm
Data Streams
Stream Processing

Data Streams

• Definition:
 A data stream can be seen as a continuous and potentially infinite stochastic process in which events occur independently from another

• Huge amount of data
 → Data objects cannot be stored

• Single scan
Stream Processing

Data Streams – Key Characteristics

• The data elements in the stream arrive on-line

• The system has no control over the order in which data elements arrive (either within a data stream or across multiple data streams)

• Data streams are potentially unbound in size

• Once an element has been processed it is discarded or archived
Stream Processing

Data Stream Management System

Data Streams

Stream Processor

Ad-hoc queries

Output Streams

Limited working storage

Archival Storage

time
Stream Processing

Data Stream Models – Insert-Only Model

• Once an element x_i is seen, it cannot be changed
Data Stream Models – Insert-Delete Model

- Elements x_i can be deleted or updated
Stream Processing

Data Stream Models – Additive Model

- Each element x_i is an increment to the previous version of the given data object

![Diagram showing the Stream Processor and data flow](image-url)
Streaming Methods

• Huge amount of data vs. limited resources in space → impractical to store all data

• Solutions:
 • Storing summaries of previously seen data
 • “Forgetting” stale data

• But: Trade-off between storage space and the ability to provide precise query answers
Streaming Methods – Sliding Windows

- Idea: Keep most recent stream elements in main memory and discard older ones

- Timestamp-based:

 ![Diagram of sliding windows on a data stream]
Streaming Methods – Sliding Windows

- Idea: Keep most recent stream elements in main memory and discard older ones

- Sequence-based:
Streaming Methods – Ageing

• Idea: Keep only the summary in main memory and discard objects as soon as they are processed

• Multiply the summary with a decay factor after each time epoch, resp. after a certain amount of occurring elements
Streaming Methods

- High velocity of incoming data vs. limited resources in time \rightarrow impossible to process all data

- Solutions:
 - Data reduction
 - Data approximation

- But: Trade-off between processing speed and the ability to provide precise query answers
Stream Processing

Streaming Methods – Sampling

• Select a subset of the data
 → Reduce the amount of data to process

• Difficulty: Obtaining a representative sample

• Simplest form: random sampling
 – Reservoir Sampling
 – Min-Wise Sampling

• Load Shedding: Discard some fractions of data if the arrival rate of the stream might overload the system

Reservoir Sampling Algorithm

input: Stream \(S \), Size of reservoir \(k \)

begin
 Insert first \(k \) objects into reservoir;
 foreach \(v \in S \) do
 Let \(i \) be the position of \(v \);
 \(M \) := random integer in range \(1..i \);
 if \(M \leq k \) then
 Insert \(v \) into reservoir;
 Delete an instance from the reservoir at random;

end
Streaming Methods – Data Synopsis & Histograms

- Summaries of data objects oftenly used to reduce the amount of data
 - e.g. Microclusters that describe groups of similar objects

- Histograms are used to approximate the frequency distribution of element values
 - Commonly used for query optimizers (e.g. range queries)
Overview of techniques to build a summary (reduced representation) of a sequence of numeric attributes:
Diskrete Wavelet Transformation (DWT)

- **Idea:**
 - Sequence represented as linear combination of basic wavelet functions
 - Wavelet transformation decomposes a signal into several groups of coefficients at different scales
 - Small coefficients can be eliminated → Small errors when reconstructing the signal
 - Take only the first function coefficients
 - Often: Haar-wavelets used (easy to implement)
Example:

Step-wise transformation of sequence (stream) $X = \{8, 4, 1, 3\}$ into Haar-wavelet representation $H = [4, 2, 2, -1]$

$Lossless$ Reconstruction of original sequence (stream) from Haar-wavelet representation:

$h_1 = 4 = \text{mean}(8, 4, 1, 3)$

$h_2 = 2 = \text{mean}(8, 4) - \text{mean}(1, 3)$

$h_3 = 2 = \frac{(8-4)}{2}$

$h_4 = -1 = \frac{(1-3)}{2}$
Haar Wavelet Transformation

Input sequence:
\[S = (2, 5, 8, 9, 7, 4, -1, 1) \]

Step 1:
\[s_1 = \frac{(2 + 5, 8 + 9, 7 + 4, -1 + 1)}{2}, \quad d_1 = \frac{(2 - 5, 8 - 9, 7 - 4, -1 - 1)}{2} \]
\[s_1 = (3.5, 8.5, 5.5, 0), \quad d_1 = (-1.5, -0.5, 1.5, -1) \]

Step 2:
\[s_2 = \frac{(3.5 + 8.5, 5.5 + 0)}{2}, \quad d_2 = \frac{(3.5 - 8.5, 5.5 - 0)}{2} \]
\[s_2 = (6, 2.75), \quad d_2 = (-2.5, 2.75) \]

Step 3:
\[s_3 = \frac{(6 + 2.75)}{2}, \quad d_3 = \frac{(6 - 2.75)}{2} \]
\[s_3 = 4.375, \quad d_3 = \{1.625\} \]
→ Wavelet coefficients \{4.375, 1.625, -2.5, 2.75, -1.5, -0.5, 1.5, -1\}
Spark Streaming

- Spark’s Streaming Framework build on top of Spark’s Core API

- Data ingestion from several different data sources

- Stream processing might be combined with other Spark libraries (e.g. Spark Mllib)
Spark Streaming

- Spark’s Streaming Workflow:

 - Streaming engine receives data from input streams
 - Data stream is divided into several microbatches, i.e. sequences of RDDs
 - Microbatches are processed by Spark engine
 - The result is a data stream of batches of processed data
Stream Processing

Spark Streaming

- DStreams (Discretized Streams) as basic abstraction

- Any operation applied on a DStream translates to operations on the underlying RDDs (computed by Spark Engine)

- StreamingContext objects as starting points

```python
sc = SparkContext(master, appName)
ssc = StreamingContext(sc, 1) #params: SparkContext, time interval
```
Stream Processing

Spark Streaming

General schedule for a Spark Streaming application:

1. Define the StreamingContext `ssc`
2. Define the input sources by creating input DStreams
3. Define the streaming computations by applying transformations and output operations to DStreams
4. Start receiving data and processing it using `ssc.start()`
5. Wait for the processing to be stopped (manually or due to any error) using `ssc.awaitTermination()`
6. The processing can be manually stopped using `ssc.stop()`
Spark Streaming

```python
# Create a local StreamingContext with two working threads and batch interval of 1 sec
sc = SparkContext("local[2]","NetworkWordCount")
ssc = StreamingContext(sc, 1)

# Create a DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

# Split each line into words
words = lines.flatMap(lambda line: line.split(" "))

# Count each word in each batch
pairs = words.map(lambda word: (word,1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

# Print the first ten elements of each RDD of this DStream to the console
wordCounts.pprint()

# Start the computation and wait for it to terminate
ssc.start()
ssc.awaitTermination()
```
Spark Streaming

- Support of window operations
- Two basic parameters:
 - windowLength
 - slideInterval
- Support of many transformations for windowed DStreams

#Reduce last 30 sec of data, every 10 sec

```python
winWordCounts = pairs
    .reduceByKeyAndWindow(lambda x,y: x+y, 30, 10)
```
Stream Processing

Apache Storm

• Alternative to Spark Streaming

• Support of Real-time Processing

• Three abstractions:
 – Spouts
 – Bolts
 – Topologies
Stream Processing

Apache Storm

- **Spouts:**
 - Source of streams
 - Typically reads from queuing brokers (e.g. Kafka, RabbitMQ)
 - Can also generate its own data or read from external sources (e.g. Twitter)

- **Bolts:**
 - Processes any number of input streams
 - Produces any number of output streams
 - Holds most of the logic of the computations (functions, filters,...)
Stream Processing

Apache Storm

- Topologies:
 - Network of spouts and bolts
 - Each edge represents a bolt subscribing to the output stream of some other spout or bolt
 - A topology is an arbitrarily complex multi-stage stream computation
Apache Storm

• Streams:
 – Core abstraction in Storm
 – A stream is an unbounded sequence of tuples that is processed and created in parallel in a distributed fashion
 – Tuples can contain standard types like integers, floats, shorts, booleans, strings and so on
 – Custom types can be used if a own serializer is defined
 – A stream grouping defines how that stream should be partitioned among the bolt's tasks
Apache Storm

```java
Config conf = new Config();
conf.setNumWorkers(2); // use two worker processes

topologyBuilder.setSpout("blue-spout", new BlueSpout(), 2); // set parallelism hint to 2

topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2)
    .setNumTasks(4)
    .shuffleGrouping("blue-spout");
// 4 Tasks spread across 2 Executors and the
// tuples shall be randomly distributed across
// the bolt's tasks, each bolt shall get an
// equal number of tuples

topologyBuilder.setBolt("yellow-bolt", new YellowBolt(), 6)
    .shuffleGrouping("green-bolt");

StormSubmitter.submitTopology("mytopology", conf, topologyBuilder.createTopology());
```
Further Reading

- Joao Gama: *Knowledge Discovery from Data Streams* (http://www.liaad.up.pt/area/jgama/DataStreamsCRC.pdf)
- Jure Leskovec, Anand Rajaraman, Jeff Ullman: *Mining of Massive Datasets*