Chapter 5:

Stream Processing

Today's Lesson

- Data Streams & Data Stream Management System
- Data Stream Models
 - Insert-Only
 - Insert-Delete
 - Additive
- Streaming Methods
 - Sliding Windows & Ageing
 - Data Synopsis
- Stream Processing Concepts & Tools
 - Micro-Batching with Apache Spark Streaming
 - Real-time Stream Processing with Apache Storm

Data Streams

Data Streams

• Definition:

A data stream can be seen as a continuous and potentially infinite stochastic process in which events occur independently from another

- Huge amount of data
 → Data objects cannot be stored
- Single scan

Data Streams – Key Characteristics

- The data elements in the stream arrive on-line
- The system has no control over the order in which data elements arrive (either within a data stream or across multiple data streams)
- Data streams are potentially unbound in size
- Once an element has been processed it is discarded or archived

Data Stream Models – Insert-Only Model

• Once an element x_i is seen, it cannot be changed

Big Data Management and Analytics

Data Stream Models – Insert-Delete Model

• Elements *x_i* can be deleted or updated

Big Data Management and Analytics

Data Stream Models – Additive Model

Each element x_i is an increment to the previous version of the given data object

Streaming Methods

- Huge amount of data vs. limited resources in space \rightarrow impractical to store all data
- Solutions:
 - Storing summaries of previously seen data
 - "Forgetting" stale data
- But: Trade-off between storage space and the ability to provide precise query answers

Streaming Methods – Sliding Windows

- Idea: Keep most recent stream elements in main memory and discard older ones
- Timestamp-based:

Streaming Methods – Sliding Windows

- Idea: Keep most recent stream elements in main memory and discard older ones
- Sequence-based:

Streaming Methods – Ageing

• Idea: Keep only the summary in main memory and discard objects as soon as they are processed

• Multiply the summary with a decay factor after each time epoche, resp. after a certain amount of occuring elements

Streaming Methods

- High velocity of incoming data vs. limited resources in time \rightarrow impossible to process all data
- Solutions:
 - Data reduction
 - Data approximation
- But: Trade-off between processing speed and the ability to provide precise query answers

Streaming Methods – Sampling

- Select a subset of the data
 → Reduce the amount of data to process
- Difficulty: Obtaining a *representative* sample
- Simplest form: *random sampling*
 - Reservoir Sampling
 - Min-Wise Sampling

Reservoir Sampling Algorithm input: Stream *S*, Size of reservoir *k* **begin** Insert first *k* objects into reservoir; **foreach** $v \in S$ **do** Let *i* be the position of *v*; $M \coloneqq random$ integer in range 1..i; **if** $M \leq k$ **then** Insert *v* into reservoir; Delete an instance from the reservoir at random;

• Load Shedding: Discard some fractions of data if the arrival rate of the stream might overload the system

Streaming Methods – Data Synopsis & Histograms

- Summaries of data objects oftenly used to reduce the amount of data
 - e.g. Microclusters that describe groups of similar objects
- Histograms are used to approximate the frequency distribution of element values
 - Commonly used for query optimizers (e.g. range queries)

• Overview of techniques to build a summary (reduced representation) of a sequence of numeric attributes:

Diskrete Wavelet Transformation (DWT)

- Idea:
 - Sequence represented as linear combination of basic wavelet functions
 - Wavelet transformation decomposes a signal into several groups of coefficients at different scales
 - Small coefficients can be eliminated
 → Small errors when reconstructing the signal
 - →Take only the first function coefficents
 - Often: Haar-wavelets used (easy to implement)

Example:

Step-wise transformation of sequence(stream) X=<8,4,1,3> into Haar-wavelet representation H=[4,2,2,-1]

(Lossless) Reconstruction of original sequence (stream) from Haar-wavelet representation:

Haar Wavelet Transformation

Input sequence:

$$S = (2, 5, 8, 9, 7, 4, -1, 1)$$

Haar Wavelet Transform Algorithm input: Sequence $S = (x_0, x_1, ..., x_{2n}, x_{2n+1})$ of even length output: Sequence of wavelet coefficients begin Transform S into a sequence of two-component-vectors $((s_0, d_0), ..., (s_n, d_n))$ where $\binom{S_i}{d_i} = \frac{1}{2} \cdot \binom{1 \quad 1}{1 \quad -1} \cdot \binom{x_i}{x_{i+1}};$ Separate the sequences s and d_i Recursively transform sequence s_i

Step 1:

 $s_{1} = (2 + 5, 8 + 9, 7 + 4, -1 + 1)/2, d_{1} = (2 - 5, 8 - 9, 7 - 4, -1 - 1)/2$ $s_{1} = (3.5, 8.5, 5.5, 0), d_{1} = \{-1.5, -0.5, 1.5, -1\}$ **Step 2:** $s_{2} = (3.5 + 8.5, 5.5 + 0)/2, d_{2} = (3.5 - 8.5, 5.5 - 0)/2$ $s_{2} = (6, 2.75), d_{2} = \{-2.5, 2.75\}$ **Step 3:** $s_{3} = (6 + 2.75)/2, d_{3} = (6 - 2.75)/2$ $s_{3} = 4.375, d_{3} = \{1.625\}$ \rightarrow Wavelet coefficients $\{4.375, 1.625, -2.5, 2.75, -1.5, -0.5, 1.5, -1\}$

Spark Streaming

- Spark's Streaming Framework build on top of Spark's Core API
- Data ingestion from several different data sources

• Stream processing might be combined with other Spark libraries (e.g. Spark Mllib)

Spark Streaming

• Spark's Streaming Workflow:

- Streaming engine receives data from input streams
- Data stream is divided into several microbatches, i.e. sequences of RDDs
- Microbatches are processed by Spark engine
- The result is a data stream of batches of processed data

Spark Streaming

• DStreams (Discretized Streams) as basic abstraction

- Any operation applied on a DStream translates to operations on the underlying RDDs (computed by Spark Engine)
- StreamingContext objects as starting points

```
sc = SparkContext(master, appName)
ssc = StreamingContext(sc, 1) #params: SparkContext, time interval
```


Spark Streaming

General schedule for a Spark Streaming application:

- 1. Define the StreamingContext ssc
- 2. Define the input sources by creating input DStreams
- 3. Define the streaming computations by applying transformations and output operations to Dstreams
- 4. Start receiving data and processing it using ssc.start()
- 5. Wait for the processing to be stopped (manually or due to any error) using ssc.awaitTermination()
- 6. The processing can be manually stopped using ssc.stop()

Spark Streaming


```
#Create a local StreamingContext with two working threads and batch
#interval of 1 sec
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)
#Create a DStream that will connect to localhost:9999
lines = ssc.socketTextStream("localhost", 9999)
#Split each line into words
words = lines.flatMap(lambda line: line.split(" "))
#Count each word in each batch
pairs = words.map(lambda word: (word,1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)
#Print the first ten elements of each RDD of this DStream to the console
wordCounts.pprint()
```

```
#Start the computation and wait for it to terminate
ssc.start()
ssc.awaitTermination()
```


Spark Streaming

- Support of window operations
- Two basic parameters:
 - windowLength
 - slideInterval

• Support of many transformations for windowed DStreams

#Reduce last 30 sec of data, every 10 sec winWordCounts = pairs .reduceByKeyAndWindow(lambda x,y: x+y, 30, 10)

- Alternative to Spark Streaming
- Support of Real-time Processing
- Three abstractions:
 - Spouts
 - Bolts
 - Topologies

- Spouts:
 - Source of streams
 - Typically reads from queuing brokers (e.g. Kafka, RabbitMQ)
 - Can also generate its own data or read from external sources (e.g. Twitter)
- Bolts:
 - Processes any number of input streams

- Produces any number of output streams
- Holds most of the logic of the computations (functions, filters,...)

- Topologies:
 - Network of spouts and bolts
 - Each edge represents a bolt subscribing to the output stream of some other spout or bolt
 - A topology is an arbitrarily complex multi-stage stream computation

- Streams:
 - Core abstraction in Storm
 - A stream is an unbounded sequence of tuples that is processed and created in parallel in a distributed fashion
 - Tuples can contain standard types like integers, floats, shorts, booleans, strings and so on
 - Custom types can be used if a own serializer is defined
 - A stream grouping defines how that stream should be partitioned among the bolt's tasks

Further Reading

- Joao Gama: *Knowledge Discovery from Data Streams* (http://www.liaad.up.pt/area/jgama/DataStreamsCRC.pdf)
- Jure Leskovec, Anand Rajaraman, Jeff Ullman: *Mining of Massive Datasets*
- Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia: *Learning Spark - Lightning-Fast Big Data Analysis*
- http://spark.apache.org/docs/latest/streaming-programmingguide.html
- http://storm.apache.org/documentation/Concepts.html