Big Data Management and Analytics

Chapter 2:

NoSQL Databases

50

Outline

* History

* Concepts
« ACID
+ BASE
+ CAP

 Data Models
« Key-Value
* Document
 Column-based
* Graph

60s: IBM developed the Hierarchical Database Model

* Tree-like structure
« Data stored as records connected by links
* Support only one-to-one and one-to-many relationships

Mid 80’s: Rise of Relational Database Model

 Data stored in a collection of tables (rows and columns)
— Strict relational scheme

* SQL became standard language (based on relational algebra)

— Impedance Mismatch!

=

DATABASE HiStOry _ Impedance MismatCh

SYSTEMS
GROUP

Sl |LNR _| Lname | Status | Sitz__ I PNR | Pname | Ot

| TNR | Tname | Farbe | Gewicht [LNR | PNR | TNR | Menge

Gewicht:
Menge 7

Given the LTP scheme from Datenbanksysteme | and an object
of type Supply:
How to incorporate the data bundled in the object Supply
into the DB?

Big Data Management and Analytics 53

=

DATABASE HiStOFy _ Impedance MismatCh

SYSTEMS
GROUP

e |LNR | Lname | Status | Sitz__ S PNR | Pname | Ort |
L1 Meier 0 etter P2 Pleite Bonn
| TNR | Tname | Farbe | Gewicht [LNR | PNR | TNR | Menge

T6 Schraube rot 03

INSERT INTO L VALUES (Supply.getSupplier().getLNRQ, -.-..);

INSERT INTO P VALUES (Supply.getProject().getPNRQ, -..);

Big Data Management and Analytics 54

=

DATABASE HiStOFy _ Impedance MismatCh

SYSTEMS
GROUP

Supply:
Suoplies

Gewicht:
Menoe 7

Meier 20 Wetter P2 Pleite Bonn

TNR | Tname | Farbe | Gewichi [LNR |PNR | TNR | Menge |

T6 Schraube __rof 03 > L1 P2 T6 700

INSERT INTO LTP VALUES (...);

* Object-oriented encapsulation vs. storing data distributed
among several tables

— Lots of data type maintenance by the programmer

Big Data Management and Analytics

55

Mid 90’s: Trend of the Object-Relational Database Model

« Data stored as objects (including data and methods)

* Avoidance of object-relational mapping
— Programmer-friendly

« But still Relational Databases prevailed in the 90°s

Mid 2000's: Rise of Web 2.0

* Lots of user generated data through web applications

— Storage systems had to become scaled up

=

DATABASE H i Sto ry

SYSTEMS

g II. - |
LIMU
T i
GROUP

Approaches to scale up storage systems

* Two opportunities to solve the rising storage system:

* Vertical scaling
Enlarge a single machine
— Limited in space
— Expensive

—
- —

* Horizontal scaling
Use many commodity ma-
chines and form computer i
clusters or grids
— Cluster maintenance

l

Big Data Management and Analytics 57

=

DATABASE H i Sto ry

SYSTEMS
GROUP

Approaches to scale up storage systems

* Two opportunities to solve the rising storage system:

« Vertteal scaling
Enlarge a singtesmachine
— Limited in space
— XPEer1sive

* Horizontal scaling
Use many commodity ma-
chines and form computer i —_
clusters or grids
— Cluster maintenance

Big Data Management and Analytics 58

Mid 2000’'s: Birth of the NoSQL Movement

* Problem of computer clusters:
Relational databases do not scale well horizontally

— Big Players like Google or Amazon developed their own
storage systems: NoSQL (,,Not-Only SQL") databases were

born

Today: Age of NoSQL

» Several different NoSQL systems available (>225)
GOO&IQ Bigtable ° redis @neoqj HYPEE:\BLE
%Cassandra ﬁ‘gi; azon .mongoDB HH%FH:SHE

There is no unique definition but some characteristics for
NoSQL Databases:

* Horizontal scalability (cluster-friendliness)
* Non-relational

* Distributed

 Schema-less

* Open-source (at least most of the systems)

£ | About the concepts behind NoSQL

DATABASE

sstevs | [Databases

ACID - The holy grail of RDBMSs:

* Atomicity: Transactions happen entirely or not at all. If a

transaction fails (partly), the state of the database is
unchanged.

* Consistency: Any transaction brings the database from one
valid state to another and does not break one of the pre-
defined rules (like constraints).

» Isolation: Concurrent execution of transactions results in a
system state that would be obtained if transactions were
executed serially.

* Durability: Once a transaction has been commited, it will
remain so.

Big Data Management and Analytics 61

=

DATABASE
SYSTEMS

GROUP

About the concepts behind NoSQL
Databases

BASE — An artificial concept for NoSQL databases:

« Basically Available: The system is generally available, but

some data might not at any time (e.q. due to node failures)

« Soft State: The system’s state changes over time. Stale data

may expire if not refreshed.

« Eventual consistency: The system is consistent from time to

time, but not always. Updates are propagated through the
system if there Is enough time.

—

BASE is settled on the opposite site to ACID when
considering a ,,consistency-availability spectrum”

Big Data Management and Analytics

62

£ | About the concepts behind NoSQL

DATABASE

ssevs | Databases

GROUP

Levels of Consistency:

Monotonic Read Consistency

Immediate Consistency

Strong Consistency

Transactions

Read-Your-Own-Writes

Big Data Management and Analytics 63

£ | About the concepts behind NoSQL

DATABASE

ssevs | Databases

GROUP

Levels of Consistency:

» Eventual Consistency: Write operations are not spread
across all servers/partitions immediately

 Monotononic Read Consistency: A client who read an object
once will never read an older version of this object

* Read Your Own Writes: A client who wrote an object will
never read an older version of this object

 Immediate Consistency: Updates are propagated
Immediately, but not atomic

Big Data Management and Analytics 64

Levels of Consistency:

» Strong consistency: Updates are propagated immediately +
support of atomic operations on single data entities (usually
on master nodes)

« Transactions: Full support of ACID transaction model

£ | About the concepts behind NoSQL

DATABASE

sstevs | [Databases

Data sharding Data replication

Document

- lg-

The two types of consistency:

Document

* Logical consistency:
Data is consistent within itself (Data Integrity)

* Replication consistency:
Data Is consistent across multiple replicas (on multiple
machines)

Big Data Management and Analytics 66

Brewer’'s CAP Theorem:

CONSISTENCY

PARTITION

AVAILABILITY TOLERANCE

Any networked shared-data system can have at
most two of the three desired properties!

=

DATABASE
SYSTEMS
GROUP

About the concepts behind NoSQL
Databases

DB-Systems allowed by CAP Theorem:

 CP-Systems: Fully consistent and partitioned systems
renounce availability. Only consistent nodes are available.

 AP-Systems: Fully available and partitioned systems

renounce consistency. All nodes answer to queries all the

time, even iIf answers are inconsistent.

 AC-Systems: Fully available and consistent systems

renounce partitioning. Only possible if the system is not

distributed.

Big Data Management and Analytics

68

=

DATABASE B i g P i Ctu re

SYSTEMS
GROUP

All clients always

CAP Theorem: have the same view
of the data

C C

A P

A Each client can al- The system works well
ways read and write despite physical
network partitions

Big Data Management and Analytics 69

=

DATABASE B i g P i Ctu re

SYSTEMS
GROUP

All clients always

CAP Theorem: have the same view
of the data
C C
ACID

AC-Systems

- RDBMSs (MySQL,
Postgres, ...)

CP-Systems

BASE P
A , A AP-Systems
Each client can al- The system works well
ways read and write despite physical

network partitions

Big Data Management and Analytics 70

The 4 Main NoSQL Data Models:

* Key/Value Stores
e Document Stores
« Wide Column Stores

 Graph Databases

=

DATABASE
SYSTEMS
GROUP

NoSQL Data Models

Key/Value Stores:

* Most simple form of database systems
» Store key/value pairs and retrieve values by keys

* Values can be of arbitrary format

10213

10334

10023

Big Data Management and Analytics

72

Key/Value Stores:

* Consistency models range from Eventual consistency to
serializibility

 Some systems support ordering of keys, which enables
efficient querying, like range queries

 Some systems support in-memory data maintenance, some
use disks

— There are very heterogeneous systems

Key/Value Stores - Redis:

&P redis

* In-memory data structure store with built-in replication,
transactions and different levels of on-disk persistence

« Support of complex types like lists, sets, hashes, ...

e Support of many atomic operations

>> SET val 1

>> GET val => 1

>> [INCR val => 2

>> LPUSH my list a (=> “a“)

>> LPUSH my list b (=> “b*“,“a“)

>> RPUSH my list ¢ (=> “b“,“a“,“c”)
>> LRANGE my list O 1 => b,a

Key/Value Stores — The Redis cluster model: e redis

Data Is automatically sharded across nodes

Some degree of availability, achieved by master-slave
architecture (but cluster stops in the event of larger failures)

Easily extendable

$ NoSQL Data Models

SYSTEMS
GROUP

Key/Value Stores — The Redis cluster model:

Nodes Hash slots

= =l
=i
Nodes Hash slots E
—] 0 node 2000
ammms F38001
15000 —
(@ :
—]5001 112000 Nodes Hash slots
n s 112001 —0
—110000 u B B
_ 114522 - 500
110001
B remove —17501
114522 n
114522

node

Big Data Management and Analytics

$ NoSQL Data Models

SYSTEMS
GROUP

Key/Value Stores — The Redis cluster model: é redis

Master Master Slave Replicated
Nodes Hash slots Nodes Hash slots Nodes Hash slots
~ 0 S e

5000 15000

-\ 5001 R =

—~— 110001 ~—~ 10001 —~ 10001
114522 14522 114522

Hash slots 5001 — 10000 Slave node B’ is promoted as
cannot be used anymore the new master and hash slots

50017 — 10000 are still available

Big Data Management and Analytics

=

DATABASE B i g P i Ctu re

SYSTEMS
GROUP

All clients always

CAP Theorem: have the same view Key/Value Stores
of the data
ACID

AC-Systems

- RDBMSs (MySQL,
Postgres, ...)

CP-Systems
- Redis

BASE

P

The system works well
despite physical
network partitions

A

A Each client can al-
ways read and write

AP-Systems
- Dynamo

Big Data Management and Analytics 78

Document Stores:

e Store documents in form of XML or JSON

e Semi-structured data records that do not have a
homogeneous structure

 Columns can have more than one value (arrays)
* Documents include internal structure, or metadata

 Data structure enables efficient use of indexes

Document Stores:

Given following text: =~ Max Mustermann
Musterstralle 12

D-12345 Musterstadt

<contact>
<first_name>Max</first_name>
<last_name>Mustermann</last_name>
<street>Musterstralle 12</street>
<city>Musterstadt</city>
<zip>12345</zip>
<country>D</country>

</contact>

— Find all <contact>s where <zip> is “12345"

Document Stores:

. mongoDB

Data stored as documents in binary representation (BSON)
Similarly structured documents are bundled in collections
Provides own ad-hoc query language

Supports ACID transactions on document level

$ NoSQL Data Models

SYSTEMS
GROUP

Document Stores: ‘ mongoDB

MongoDB Data Management:
— Automatic data sharding
— Automatic re-balancing

* Multiple sharding policies:

— Hash-based sharding: Documents are distributed
according to an MD5 hash — uniform distribution

— Range-based sharding: Documents with shard key values
close to one another are likely to be co-located on the
same shard — works well for range queries

— Location-based sharding: Documents are partitioned wrt
to a user-specified configuration that associates shard
key ranges with specific shards and hardware

Big Data Management and Analytics 82

§ NoSQL Data Models

SYSTEMS
GROUP

Document Stores: ‘mongoDB
MongoDB Consistency & Availabilty:

* Default: Strong consistency (but configurable)

* Increased availability through replication

— Replica sets consist of one primary

Writes Reads
and multiple secondary members

— MongoDB applies writes on the ‘/ \
N> &

Big Data Management and Analytics 83

primary and then records the
operations on the primary’s oplog

=

DATABASE B i g P i Ctu re

SYSTEMS
GROUP

All clients always

CAP Theorem: have the same view Key/Value Stores
of the data Document Stores
ACID

AC-Systems

- RDBMSs (MySQL,
Postgres, ...)

CP-Systems
- Redis - MongoDB

BASE

P

The system works well
despite physical
network partitions

A

A Each client can al-
ways read and write

AP-Systems
- Dynamo - CouchDB

Big Data Management and Analytics 84

Wide Column Stores:

* Rows are identified by keys

 Rows can have different numbers of columns (up to
millions)

* Order of rows depend on key values (locality is important!)
* Multiple rows can be summarized to families (or tablets)

* Multiple families can be summarized to a key space

=

DATABASE
SYSTEMS
GROUP

NoSQL Data Models

Wide Column Stores:

A AR

Key Space

Column Name Column Nam:

Val Value

Column Name

Value

Column Name Column Name

Value Value

Column Name

Value

Column Name

Value

Column Name

Value

Big Data Management and Analytics

T

86

§ NoSQL Data Models

SYSTEMS
GROUP

Wide Column Stores:

Key Space ,, Edibles”

variety

origin flavor

+Egypt” sour”

2015-08-11 2015-08-12 : 2015-09-21
65 50 : 87

Carrot

Big Data Management and Analytics

87

Wide Column Stores: 4’&? Cassandra

* Developed by Facebook, Apache project since 2009

N
 Cluster Architecture: N N Yy
— P2P system (ordered as rings) N{:}N N{:}N
— Each node plays the same role N N
(decentralized) \ \ v N

— Each node accepts read/write operations

* User access through nodes via Cassandra Query Language
(CQL)

Wide Column Stores: 4%? Cassandra

Consistency
* Tunable Data Consistency (choosable per operation)

 Read repair: if stale data is read, Cassandra issues a read
repair — find most up-to-date data and update stale data

* Generally: Eventually consistent

* Main focus on availability!

=

DATABASE B i g P i Ctu re

SYSTEMS
GROUP

All clients always

CAP Theorem: have the same view Key/Value Stores
of the data Document Stores

Wide Column Stores
C C

ACID
AC-Systems CP-Systems
- RDBMSs (MySQL, -Redis - MongoDB
Postgres, ...) - HBase
BASE

P

The system works well
despite physical
- Cassandra network partitions

A

A Each client can al-
ways read and write

AP-Systems
- Dynamo - CouchDB

Big Data Management and Analytics 90

Graph Databases:

* Use graphs to store and represent relationships between
entities

 Composed of nodes and edges

 Each node and each edge can contain properties (Property-
Graphs)

Graph Databases: @neoqj

Alice is a friend of Bob and vice versa. They both love the
movie , Titanic”.

Graph Databases: @neoqj

Alice is a friend of Bob and vice versa. They both love the
movie , Titanic”.

Graph Databases: @neoqj

Alice is a friend of Bob and vice versa. They both love the
movie , Titanic”.

is a friend of

is a friend of

Graph Databases: @neoqj

* Master-Slave Replication (no partitioning!)

* Consistency: Eventual Consistency (tunable to Immediate
Consistency)

 Support of ACID Transactions
 Cypher Query Language

* Schema-optional

§ Big Picture

SYSTEMS
GROUP

All clients always

CAP Theorem: have the same view
of the data
C C
ACID
AC-Systems
- RDBMSs (MySQL,
Postgres, ...)
- Neo4)
BASE

A A AP-Systems

Each client can al-
- CouchDB

ways read and write - Dynamo

- Cassandra

Big Data Management and Analytics

- Redis
- HBase

Key/Value Stores
Document Stores
Wide Column Stores
Graph Databases

CP-Systems
- MongoDB

P

The system works well
despite physical
network partitions

96

