Big Data Management and Analytics WS 2016/17

Tutorial 10: Text Processing & High Dimensionality Data

Assignment 10-1 Finding similar items

Suppose that the universal set is given by $\{1, \ldots, 10\}$. Construct minhash signatures for the following sets:

- (a) $S_1 = \{3, 6, 9\}$
- (b) $S_2 = \{2, 4, 6, 8\}$
- (c) $S_3 = \{2, 3, 4\}$
- 1. Construct the signatures for the sets using the following list of permutations:
 - (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 - (10, 8, 6, 4, 2, 9, 7, 5, 3, 1)
 - (4, 7, 2, 9, 1, 5, 3, 10, 6, 8)
- 2. Suppose that instead of using particular permutations to construct signatures for the threse sets, we use hash functions. The three hash functions we use are:
 - $h_1(x) = x \mod 10$
 - $h_2(x) = (2x+1) \mod 10$
 - $h_3(x) = (3x+2) \mod 10$
- 3. How does the estimated Jaccard similarity, derived from (1.) and (2.) compare with the true Jaccard similarity of the original data? How to reduce deviations in the approximated Jaccard similarities?

Assignment 10-2 PCA - General Questions

- a) Please describe what a PCA aims for and under what circumstances it is most helpful.
- b) Which possibly negativ consequences might arise when applying PCA to a dataset of unknown structure?

Assignment 10-3 PCA

Consider the $X \in \mathbb{R}^{M \times N}$ matrix containing six data points $X_i \in \mathbb{R}^2$.

$$X = \begin{pmatrix} 1 & 0\\ 2 & 0\\ 3 & 0\\ 5 & 6\\ 6 & 6\\ 7 & 6 \end{pmatrix}$$

Conduct a PCA on the given data, i.e. project the data onto a one-dimensional space. Please state the eigenvectors, eigenvalues, covariance matrix and visualize the data before and after the PCA.