Big Data Management and Analytics Assignment 9

Assignment 9-1

(a) k-Bucket histograms:

- Histogram consists constantly of $k=5$ buckets
- Upper threshold per bucket MAX = 10
- Lower threshold per bucket MIN = 2

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING INSERT 3
Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING INSERT 3
Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING INSERT 3
 INDEX

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$ INSERT 1
Mode: INSERTING
Sequence $=3,1,3,5,2,3,4,1,5,3$ INSERT 1
Mode: INSERTING
Sequence $=3,1,3,5,2,3,4,1,5,3$ INSERT 1
Mode: INSERTING
 INDEX

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$ INSERT 3
Mode: INSERTING
Sequence $=3,1,3,5,2,3,4,1,5,3$ INSERT 3
Mode: INSERTING
 INDEX

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$
INSERT 5
Mode: INSERTING

Node:INSERTING

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$
INSERT 2
Mode: INSERTING

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING
Threshold exceeded! \rightarrow STOP
 INDEX

Assignment 9-1

Split \& Merge

Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING

Assignment 9-1

Split \& Merge

Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING
Split bucket 3 [size 11] (in half, floor function for bucket 3 if bucket size odd)
 INDEX

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$

Split \& Merge

Mode: INSERTING
Merge buckets 1 [size 5] and 2 [size 4] to a new bucket 1
 INDEX

Assignment 9-1

Sequence $=3,1,3,5,2,3,4,1,5,3$
Mode: INSERTING

Assignment 9-1

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING

DELETE 1

Assignment 9-1

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING

DELETE 3

Assignment 9-1

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING
DELETE 4

Assignment 9-1

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING

DELETE 5

Assignment 9-1

DELETE 4

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING
Threshold underflow! \rightarrow STOP
 INDEX

Assignment 9-1

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING
Merge bucket 4 [size 1] with the neighbor bucket that has the smallest size (bucket 3 [size 4])
 INDEX

Assignment 9-1

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING
Split bucket with the largest size (bucket 1) in half ($8 \rightarrow 4,4$)
 INDEX

Assignment 9-1

Split \& Merge

Sequence $=1,3,4,5,4,3,2,5,1,2$
Mode: DELETING

CUSUM - CUmulative SUM

Purpose: Change detection on data streams

Core idea: Observe cumulative sum of instances of a random variable

Detection mechanism: If the normalized mean of the input data differs from 0 by an threshold α

Assignment 9-2

The formula for detecting changes is:

$$
G_{t}:=\max \left(0, G_{t-1}-\omega_{t}+x_{t}\right)
$$

where:
G_{t} : cumulative sum
ω_{t} : assigned weights
x_{t} : next sample from a data stream S

The original CUSUM algorithm detects positive changes. In order to detect also negative changes we modify the equation above to:

$$
G_{t}:=\left(G_{t-1}-\omega_{t}+x_{t}\right)
$$

Given:
Sequence $S=(2,3,7,4,0,2,5,6,8,7)$
Mean $\omega=3$
Threshold $\alpha=8$

t	$x_{t}-\omega$	G_{t}	
0			
1	-1		
2	0		
3		3	$\begin{aligned} & G_{t}>\alpha \\ & 10>8 \end{aligned}$
4	1	4	Change detected
5	-3	1	between $\mathrm{t}=8$ and $\mathrm{t}=9$
6	-1	0	
7	2	2	
8	3	5	
9	5		report change at time t $G_{t}:=0$
10	4	4	

Assignment 9-3

Exponential Histograms

Purpose: solve the problem of counting number of x within a sliding window of size N

Given:
Sequence $S=(x, x, 0, x, 0,0, x, x, x, x, 0, x, x, 0, x, x)$
Window size $N=8$
Error parameter $\epsilon=\frac{1}{2}$

Assignment 9-3

Sequence $S=(x, x, 0, x, 0,0, x, x, x, x, 0, x, x, 0, x, x)$
Window size $N=8$
Error parameter $\epsilon=\frac{1}{2}$
Max. \# of buckets of same size $\tau=\frac{\left|\frac{1}{\epsilon}\right|}{2}+2=3$
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Timest. } \boldsymbol{t}_{i} & \text { Buckets } b_{i} & \begin{array}{c}\text { Element } \\ x_{i}\end{array} & \text { TOTAL } & \text { LAST } & \begin{array}{c}\text { \# buckets } \\ \text { of same size }=\boldsymbol{l}\end{array}\end{array}\right]$

Assignment 9-3

Timest. $\boldsymbol{t}_{\boldsymbol{i}}$	Buckets b_{i}	Element x_{i}	TOTAL	LAST	\# buckets of same size $=\tau$?
1	1_{1}	X	1	0	no
2	$1_{1}, 1_{2}$	X	2	0	no
3	$1_{1}, 1_{2}$	0	2	0	no
4	$2{ }_{2}, 14$	X	3	2	yes
5	$22_{2},{ }_{4}$	0	3	2	no
6	$22_{2}, 1$	0	3	2	no
7	$22_{2} 1_{4}, 1_{7}$	X	4	2	no
8	$\begin{aligned} & 2_{2}, 1_{4}, 1_{7}, 1_{8} \\ & \quad \rightarrow 2_{2}, 2_{7}, 1_{8} \end{aligned}$	X	5	2	Yes
9	$2_{2}, 2_{7}, 1_{8}, 1_{9}$	x	6	2	no

Merge two oldest buckets of same size with the largest timestamp of both buckets!

Assignment 9-3

Timest. $\boldsymbol{t}_{\boldsymbol{i}}$	Buckets \boldsymbol{b}_{i}	Element x_{i}	TOTAL	LAST	\# buckets of same size $=\tau$?
10	$\begin{array}{r} 2_{2}, 2_{7}, 1_{8}, 1_{9}, 1_{10} \\ \rightarrow{ }_{7}, 1_{8}, 1_{9}, 1_{10}^{10} \\ \rightarrow 2_{7}, 2_{9}, 1_{10} \end{array}$	x	$\begin{gathered} 7 \\ 7-2=5 \end{gathered}$	2	yes
	Merge two oldest bu same size with the la timestamp of both buck	$\begin{aligned} & \text { eets of } \\ & \text { enst } \\ & \text { kets! } \end{aligned}$			$\begin{aligned} & b_{l}:=b_{l-1} \rightarrow 2 \\ & \text { AST }=b_{l} \text {.size } \rightarrow 2 \end{aligned}$
	1. TOTAL $=$ TOTAL $-b_{l}$. size $\rightarrow 7-2=5$				

2. Oldest timestamp $t_{l} \leq t_{i}-N \rightarrow 2 \leq 10-8$ drop the oldest bucket 2_{2}

Assignment 9-3

Timest. $\boldsymbol{t}_{\boldsymbol{i}}$	Buckets b_{i}	${\underset{x}{i}}_{\text {Element }}$	TOTAL	LAST	$\begin{gathered} \text { \# buckets } \\ \text { of same size }=\tau \text { ? } \end{gathered}$
10	$2_{7}, 2{ }_{9}, 1_{10}$	x	5	2	yes
11	$2_{7}, 2_{9}, 1_{10}$	0	5	2	no
12	$2_{7}, 2_{9}, 1_{10}, 1_{12}$	x	6	2	no
13	$\begin{gathered} 2_{7}, 2_{9}, 1_{10}, 1_{12}, 1_{13} \\ \rightarrow 2_{7}, 2_{9}, 2_{12}, 1_{13} \\ \rightarrow 4_{9}, 2_{12}, 1_{13} \end{gathered}$		7 buckets of largest buckets	\uparrow	yes
				$\begin{aligned} & \text { Last buc } \\ & \text { LAST } \\ & =\text { size o } \\ & =4 \end{aligned}$	ket was merged! f the new created last bucket

Assignment 9-3

Timest. $\boldsymbol{t}_{\boldsymbol{i}}$	Buckets b_{i}	Element x_{i}	TOTAL	LAST	\# buckets of same size $=\boldsymbol{\tau}$
13	$4_{9}, 2_{12}, 1_{13}$	x	7	4	yes
14	$4_{9}, 2_{12}, 1_{13}$	0	7	4	no
15	$4_{9}, 2_{12}, 1_{13}, 1_{15}$	x	8	4	no
16	$49,2_{12}, 1_{13}, 1_{15}, 1_{16}$ $\rightarrow 4_{9}, 2_{12}, 2_{15}, 1_{16}$	x	9	4	yes

Assignment 9-3

Timest. t_{i}	Buckets b_{i}	Element x_{i}	TOTAL	LAST	\# buckets of same size $=\tau$
13	$49,2_{12}, 1_{13}$	x	7	4	yes

Estimating total number of x 's within the sliding window of size 8 in the exponential histogram:
$\# x^{\prime} \mathrm{s}=\mathrm{EH}$. TOTAL - EH.LAST/2 $=7-4 / 2=5$

Sequence $S=(x, x, 0, x, 0,0, x, x, x, x, 0, x, x, 0, x, x)$
Exact number of x 's in sliding window [6:13] : 6

Assignment 9-4

Hoeffding Trees

Core idea: For choosing the best split attribute for a node, a small subset of the training examples may suffice

Question: How many instances are required?

Solution: Utilize the Hoeffding bound

Assignment 9-4

Given:

8 examples of drivers with the attributes:

- Time since getting the driving license (1-2 years, 2-7 years, > 7 years)
- Gender (female, male)
- Residential area (urban, rural)

Further: $\delta=0.2, \quad N_{\min }=2$

- Use information gain
- Output is norminal risk class \rightarrow two attributes, $\mathrm{R}=1$

Person	Time since license	Gender	Area	Risk class
1	$1-2$	m	urban	low
2	$2-7$	m	rural	high
3	>7	f	rural	low
4	$1-2$	f	rural	high
5	>7	m	rural	high
6	$1-2$	m	rural	high
7	$2-7$	f	urban	low
8	$2-7$	m	urban	low

$$
\varepsilon=\sqrt{\frac{R^{2} \ln (1 / \delta)}{2 n}}=\sqrt{\frac{1 \ln (1 / \delta)}{2 n}}=\sqrt{\ln (1 / \delta)} \cdot \sqrt{1 /(2 n)}
$$

Where

- Confidence $\boldsymbol{\delta}$: what probability do we allow of 'failure'?
(How much do we accept a deviation $>\varepsilon$)
- Range R: e.g. a probability range from 0 to 1
- \# of training examples \mathbf{n}
- Accuracy ε : How much do we want to allow the empirical mean to differ from the true mean

For $n=2,4,6,8$ this yields:

$$
\begin{aligned}
& \varepsilon_{2} \approx 0.634 \\
& \varepsilon_{4} \approx 0.448 \\
& \varepsilon_{6} \approx 0.366 \\
& \varepsilon_{8} \approx 0.317
\end{aligned}
$$

Assignment 9-4

RECAP: Entropy and Information Gain (IG)

- T : a set of training objects
- T_{i} : a partition of T
- A : attribute
- k : \# of classes
- c_{i} : a class
- p_{i} : a frequency

$$
\text { entropy }(T)=\left\{\begin{array}{c}
0, \text { if } p_{i}=1 \text { for any class } c_{i} \\
1, \text { if } \exists k=2 \text { classes with } p_{i}=1 / 2 \text { for each } i \\
-\sum_{i=1}^{k} p_{i} \cdot \log _{2} p_{i}, \text { else }
\end{array}\right.
$$

$$
I G(T, A)=\operatorname{entropy}(T)-\sum_{i=1}^{m} \frac{\left|T_{i}\right|}{|T|} \cdot \operatorname{entropy}\left(T_{i}\right)
$$

Assignment 9-4

We initialize an empty tree. Now insert the first two records:

Person	Time since license	Gender	Area	Risk class
1	$1-2$	m	urban	low
2	$2-7$	m	rural	high

1. Compute the entropy for the first two records: entropy $\left(D_{2}\right)=1$, due to the fact that both classes have a probability of 50\%
2. Compute the information gain (IG) for all three attributes (time, gender, area):
$\operatorname{IG}\left(\right.$ time,$\left.D_{2}\right)=\operatorname{entropy}\left(D_{2}\right)-0.5$ entropy $\left(D_{2} \mid t=1-2\right)+0.5$ entropy $\left(D_{2} \mid t=2-\right.$ 7) +0 entropy $\left(D_{2} \mid t>7\right)=1-(0+0+0)=1$
$\operatorname{IG}\left(\right.$ gender,$\left.D_{2}\right)=\operatorname{entropy}\left(D_{2}\right)-1$ entropy $\left(D_{2} \mid g=m\right)+0$ entropy $\left(D_{2} \mid g=f\right)=$ $1-(1+0)=0$
$I G\left(\operatorname{area}, D_{2}\right)=\operatorname{entropy}\left(D_{2}\right)-0.5$ entropy $\left(D_{2} \mid a=u\right)+0.5$ entropy $\left(D_{2} \mid a=r\right)=$ $1-(0+0)=1$

Assignment 9-4

3. Compare the best with the second best result:
$I G\left(\right.$ time,$\left.D_{2}\right)-I G\left(\right.$ area,$\left.D_{2}\right)=1-1=0<\varepsilon_{2} \approx 0.634$
\rightarrow continue with more samples!

Assignment 9-4

Now take two more records (the first four records)

Person	Time since license	Gender	Area	Risk class
1	$1-2$	m	urban	low
2	$2-7$	m	rural	high
3	>7	f	rural	low
4	$1-2$	f	rural	high

Again, proceed as follows:

1. Compute the entropy for the first four records: entropy $\left(D_{4}\right)=1$, due to the fact that both classes have a probability of 50\%
2. Compute the information gain (IG) for all three attributes (time, gender, area): $\operatorname{IG}\left(\right.$ time,$\left.D_{4}\right)=\operatorname{entropy}\left(D_{4}\right)-\frac{2}{4}$ entropy $\left(D_{4} \mid t=1-2\right)+\frac{1}{4}$ entropy $\left(D_{4} \mid t=2-\right.$ 7) $+\frac{1}{4} \operatorname{entropy}\left(D_{4} \mid t>7\right)=1-\left(\frac{2}{4} * 1+0+0\right)=0.5$
$I G\left(\right.$ gender,$\left.D_{4}\right)=\operatorname{entropy}\left(D_{4}\right)-\frac{2}{4} \operatorname{entropy}\left(D_{4} \mid g=m\right)+\frac{2}{4}$ entropy $\left(D_{4} \mid g=f\right)=$ $1-\left(\frac{1}{2} * 1+\frac{1}{2} * 1\right)=0$
$\operatorname{IG}\left(\operatorname{area}, D_{4}\right)=\operatorname{entropy}\left(D_{4}\right)-\frac{1}{4} \operatorname{entropy}\left(D_{4} \mid a=u\right)+\frac{3}{4}$ entropy $\left(D_{4} \mid a=r\right) \approx 1-$ $\left(0+\frac{3}{4} * 0.637\right) \approx 0.523$

Assignment 9-4

3. Compare the best with the second best result:
$I G\left(\right.$ time,$\left.D_{4}\right)-I G\left(\right.$ area,$\left.D_{4}\right)=0.523-0.5 \approx 0.023<\varepsilon_{4} \approx 0.448$ \rightarrow continue with more samples!

Assignment 9-4

Now take two more records (the first six records)

Person	Time since license	Gender	Area	Risk class
1	$1-2$	m	urban	low
2	$2-7$	m	rural	high
3	>7	f	rural	low
4	$1-2$	f	rural	high
5	>7	m	rural	high
6	$1-2$	m	rural	high

Again, proceed as follows:

1. Compute the entropy for the first six records:

$$
\operatorname{entropy}\left(D_{6}\right)=-\frac{2}{3} \log \left(\frac{2}{3}\right)-\frac{1}{3} \log \left(\frac{1}{3}\right) \approx 0.637
$$

2. Compute the information gain (IG) for all three attributes (time, gender, area): $\operatorname{IG}\left(\right.$ time,$\left.D_{6}\right)=\operatorname{entropy}\left(D_{6}\right)-\frac{3}{6} \operatorname{entropy}\left(D_{6} \mid t=1-2\right)+\frac{1}{6}$ entropy $\left(D_{6} \mid t=2-\right.$ 7) $+\frac{2}{6}$ entropy $\left(D_{6} \mid t>7\right) \approx 0.637-\left(\frac{3}{6} * 0.637+0+\frac{2}{6} * 1\right) \approx-0.015$ $\operatorname{IG}\left(\right.$ gender, $\left.D_{6}\right)=\operatorname{entropy}\left(D_{6}\right)-\frac{4}{6} \operatorname{entropy}\left(D_{6} \mid g=m\right)+\frac{2}{6} \operatorname{entropy}\left(D_{6} \mid g=f\right) \approx$ $0.637-\left(\frac{4}{6} * 0.562+\frac{2}{6} * 1\right) \approx-0.072$
$I G\left(\right.$ area, $\left.D_{6}\right)=\operatorname{entropy}\left(D_{6}\right)-\frac{1}{6} \operatorname{entropy}\left(D_{6} \mid a=u\right)+\frac{5}{6} \operatorname{entropy}\left(D_{6} \mid a=r\right) \approx$ $0.637-\left(0+\frac{5}{6} * 0.5004\right) \approx 0.220$

Assignment 9-4

3. Compare the best with the second best result:
$I G\left(\right.$ area,$\left.D_{6}\right)-I G\left(\right.$ time,$\left.D_{6}\right)=0.220--0.015 \approx 0.235<\varepsilon_{6} \approx 0.366$ \rightarrow continue with more samples!

Assignment 9-4

Now take two more records (all eight records)

Person	Time since license	Gender	Area	Risk class
1	$1-2$	m	urban	low
2	$2-7$	m	rural	high
3	>7	f	rural	low
4	$1-2$	f	rural	high
5	>7	m	rural	high
6	$1-2$	m	rural	high
7	$2-7$	f	urban	low
8	$2-7$	m	urban	low

Again, proceed as follows:

1. Compute the entropy for all eight records:

$$
\operatorname{entropy}\left(D_{8}\right)=1
$$

2. Compute the information gain (IG) for all three attributes (time, gender, area): $\operatorname{IG}\left(\right.$ time,$\left.D_{8}\right)=\operatorname{entropy}\left(D_{8}\right)-\frac{3}{8}$ entropy $\left(D_{8} \mid t=1-2\right)+\frac{3}{8}$ entropy $\left(D_{8} \mid t=2-\right.$ 7) $+\frac{2}{8}$ entropy $\left(D_{8} \mid t>7\right) \approx 1-\left(\frac{3}{8} * 0.637+\frac{3}{8} * 0.637+\frac{2}{8} * 1\right) \approx 0.273$ $\operatorname{IG}\left(\right.$ gender, $\left.D_{8}\right)=\operatorname{entropy}\left(D_{8}\right)-\frac{5}{8} \operatorname{entropy}\left(D_{8} \mid g=m\right)+\frac{3}{8}$ entropy $\left(D_{8} \mid g=f\right) \approx$ $1-\left(\frac{5}{8} * 0.673+\frac{3}{8} * 0.637\right) \approx 0.341$
$I G\left(\right.$ area, $\left.D_{8}\right)=\operatorname{entropy}\left(D_{8}\right)-\frac{3}{8} \operatorname{entropy}\left(D_{8} \mid a=u\right)+\frac{5}{8} \operatorname{entropy}\left(D_{8} \mid a=r\right) \approx 1-$ $\left(0+\frac{5}{8} * 0.5004\right) \approx 0.687$

Assignment 9-4

3. Compare the best with the second best result:
$I G\left(\right.$ area,$\left.D_{8}\right)-I G\left(\right.$ gender,$\left.D_{8}\right)=0.687-0.341 \approx 0.347>\varepsilon_{8} \approx 0.317$
\rightarrow split at 'area' attribute!
\rightarrow New leafs are empty and have no 'area' attribute.
\rightarrow Further splits are not required until new data arrives.

Assignment 9-4

Computing the value of δ at which the tree would still consist only of the leaf:
The minimal ε for which a further split would be required: 0.347
$\varepsilon=\sqrt{\frac{R^{2} \ln (1 / \delta)}{2 n}} \Rightarrow 2 n \varepsilon^{2}=\ln (1 / \delta) \Rightarrow \delta=\frac{1}{\exp \left(2 n \varepsilon^{2}\right)} \approx \frac{1}{\exp \left(16 * 0.347^{2}\right)} \approx 0.1456$

