

Big Data Management and Analytics Assignment 9

(a) k-Bucket histograms:

- Histogram consists constantly of k=5 buckets
- Upper threshold per bucket MAX = 10
- Lower threshold per bucket MIN = 2

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3 Mode: INSERTING

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3 INSERT 3 Mode: INSERTING

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3 INSERT 1 Mode: INSERTING

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3 INSERT 3 Mode: INSERTING

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3 INSERT 5 Mode: INSERTING

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3 INSERT 2 Mode: INSERTING

Assign new indices!

Split & Merge

Sequence = 1, 3, 4, 5, 4, 3, 2, 5, 1, 2 Mode: DELETING DELETE 1

Sequence = 1, 3, 4, 5, 4, 3, 2, 5, 1, 2 Mode: DELETING DELETE 4

Sequence = 1, 3, 4, 5, 4, 3, 2, 5, 1, 2 Mode: DELETING DELETE 5

Merge bucket 4 [size 1] with the neighbor bucket that has the smallest size (bucket 3 [size 4])

Merge & Split

Split & Merge

CUSUM - CUmulative SUM

Purpose: Change detection on data streams

Core idea: Observe cumulative sum of instances of a random variable

Detection mechanism: If the normalized mean of the input data differs from 0 by an threshold α

The formula for detecting changes is:

$$G_t \coloneqq max(0, G_{t-1} - \omega_t + x_t)$$

where:

G_t: cumulative sum

 ω_t : assigned weights

*x*_{*t*}: next sample from a data stream S

The original CUSUM algorithm detects positive changes. In order to detect also negative changes we modify the equation above to:

$$G_t \coloneqq (G_{t-1} - \omega_t + x_t)$$

Given:

Sequence S = (2,3,7,4,0,2,5,6,8,7)

Mean $\omega = 3$

Threshold $\alpha = 8$

Exponential Histograms

Purpose: solve the problem of counting number of x within a sliding window of size N

Given:

Sequence S = (x, x, o, x, o, o, x, x, x, x, o, x, x, o, x, x) Window size N = 8Error parameter $\epsilon = \frac{1}{2}$

Sequence S = (x, x, o, x, o, o, x, x, x, x, o, x, x, o, x, x) Window size N = 8Error parameter $\epsilon = \frac{1}{2}$

Max. # of buckets of same size $\tau = \frac{\left|\frac{1}{\epsilon}\right|}{2} + 2 = 3$

Timest. <i>t_i</i>	Buckets <i>b_i</i>	Element <i>x_i</i>	TOTAL	LAST	# buckets of same size = τ ?
1	11	Х	1	0	no
2	1 ₁ , 1 ₂	Х	2	0	no
3	1 ₁ , 1 ₂	0	2	0	no
4	$1_1, 1_2, 1_4$ $\rightarrow 2_2, 1_4$	х	3	2	yes

Merge two oldest buckets of same size with the largest timestamp of both buckets!

Timest. <i>t_i</i>	Buckets <i>b_i</i>	Element <i>x_i</i>	TOTAL	LAST	$# buckets \\ of same size = \tau ?$
1	11	Х	1	0	no
2	1 ₁ , 1 ₂	Х	2	0	no
3	1 ₁ , 1 ₂	0	2	0	no
4	2 ₂ , 1 ₄	Х	3	2	yes
5	2 ₂ , 1 ₄	0	3	2	no
6	2 ₂ , 1 ₄	0	3	2	no
7	2 ₂ , 1 ₄ , 1 ₇	х	4	2	no
8	$2_2, 1_4, 1_7, 1_8 \rightarrow 2_2, 2_7, 1_8$	×	5	2	Yes
9	2 ₂ , 2 ₇ , 1 ₈ , 1 ₉	х	6	2	no

Merge two oldest buckets of same size with the largest timestamp of both buckets!

Timest. <i>t</i> _i	Buckets <i>b_i</i>	Element <i>x_i</i>	TOTAL	LAST	# buckets of same size = τ ?	
10	$\begin{array}{c} 2_{2}, 2_{7}, 1_{8}, 1_{9}, 1_{10} \\ \rightarrow 2_{7}, 1_{8}, 1_{9}, 1_{10} \\ \rightarrow 2_{7}, 2_{9}, 1_{10} \end{array}$	Х	7 7-2=5 ↑	2	yes	
	Merge two oldest buck same size with the larg timestamp of both buc	kets of gest kets!		3. L	$b_l := b_{l-1} \rightarrow 2_7$ AST = b_l . size $\rightarrow 2$	
$1. TOTAL = TOTAL - b_l. size \rightarrow 7 - 2 = 5$						
2. Oldest timestamp $t_l \le t_i - N \rightarrow 2 \le 10 - 8$						

Timest. <i>t_i</i>	Buckets <i>b_i</i>	Element x _i	TOTAL	LAST	# buckets of same size = τ ?
10	2 ₇ , 2 ₉ , 1 ₁₀	Х	5	2	yes
11	2 ₇ , 2 ₉ , 1 ₁₀	0	5	2	no
12	$2_7, 2_9, 1_{10}, 1_{12}$	Х	6	2	no
13	$2_7, 2_9, 1_{10}, 1_{12}, 1_{13}$ $\rightarrow 2_7, 2_9, 2_{12}, 1_{13}$ $\rightarrow 4_9, 2_{12}, 1_{13}$	×	7	4	yes
Merge two oldest buckets of same size with the largest timestamp of both buckets!		Merge two olde same size with timestamp of bo	st buckets of the largest oth buckets!	Last buc LAST = size c = 4	cket was merged! of the new created last bucket

Timest. <i>t_i</i>	Buckets <i>b_i</i>	Element x_i	TOTAL	LAST	# buckets of same size = τ ?
13	4 ₉ , 2 ₁₂ , 1 ₁₃	Х	7	4	yes
14	4 ₉ , 2 ₁₂ , 1 ₁₃	0	7	4	no
15	$4_9, 2_{12}, 1_{13}, 1_{15}$	х	8	4	no
16	$\begin{array}{c} 4_{9}, 2_{12}, 1_{13}, 1_{15}, 1_{16} \\ \rightarrow 4_{9}, 2_{12}, 2_{15}, 1_{16} \end{array}$	х	9	4	yes

Timest. <i>t</i> _i	Buckets <i>b_i</i>	Element <i>x</i> _i	TOTAL	LAST	# buckets of same size = τ ?
13	4 ₉ , 2 ₁₂ , 1 ₁₃	Х	7	4	yes

Estimating total number of x's within the sliding window of size 8 in the exponential histogram:

$$# x's = EH.TOTAL - EH.LAST/2 = 7 - 4/2 = 5$$

Sequence S = (x, x, o, x, o, o, x, x, x, x, o, x, x, o, x, x)

Exact number of x's in sliding window [6:13] : 6

Hoeffding Trees

Core idea: For choosing the best split attribute for a node, a small subset of the training examples may suffice

Question: How many instances are required?

Solution: Utilize the Hoeffding bound

Given:

8 examples of drivers with the attributes:

- Time since getting the driving license (1-2 years, 2-7 years, > 7 years)
- Gender (female, male)
- Residential area (urban, rural)

Further: $\delta = 0.2$, $N_{min} = 2$

- Use information gain
- Output is norminal risk class \rightarrow two attributes, R=1

Person	Time since license	Gender	Area	Risk class
1	1-2	m	urban	low
2	2-7	m	rural	high
3	>7	f	rural	low
4	1-2	f	rural	high
5	>7	m	rural	high
6	1-2	m	rural	high
7	2-7	f	urban	low
8	2-7	m	urban	low

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}} = \sqrt{\frac{1 \ln(1/\delta)}{2n}} = \sqrt{\ln(1/\delta)} \cdot \sqrt{1/(2n)}$$

Where

- Confidence δ: what probability do we allow of 'failure'? (How much do we accept a deviation > ε)
- Range **R**: e.g. a probability range from 0 to 1
- # of training examples **n**
- Accuracy $\boldsymbol{\varepsilon}$: How much do we want to allow the empirical mean to differ from the true mean

For n = 2,4,6,8 this yields:

$$\begin{aligned} \varepsilon_2 &\approx 0.634 \\ \varepsilon_4 &\approx 0.448 \\ \varepsilon_6 &\approx 0.366 \\ \varepsilon_8 &\approx 0.317 \end{aligned}$$

RECAP: Entropy and Information Gain (IG)

- *T*: a set of training objects
- T_i : a partition of T
- *A*: attribute
- k: # of classes
- *c_i*: a class
- p_i : a frequency

$$entropy(T) = \begin{cases} 0, if p_i = 1 \text{ for any class } c_i \\ 1, if \exists k = 2 \text{ classes with } p_i = \frac{1}{2} \text{ for each } i \\ -\sum_{i=1}^k p_i \cdot \log_2 p_i, else \end{cases}$$

$$IG(T,A) = entropy(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot entropy(T_i)$$

We initialize an empty tree. Now insert the first two records:

Person	Time since license	Gender	Area	Risk class
1	1-2	m	urban	low
2	2-7	m	rural	high

- 1. Compute the entropy for the first two records: $entropy(D_2) = 1$, due to the fact that both classes have a probability of 50%
- 2. Compute the information gain (IG) for all three attributes (time, gender, area): $IG(time, D_2) = entropy(D_2) - 0.5 entropy(D_2|t = 1 - 2) + 0.5 entropy (D_2|t = 2 - 7) + 0 entropy(D_2|t > 7) = 1 - (0 + 0 + 0) = 1$

 $IG(gender, D_2) = entropy(D_2) - 1 entropy(D_2|g = m) + 0 entropy(D_2|g = f) = 1 - (1 + 0) = 0$

 $IG(area, D_2) = entropy(D_2) - 0.5 entropy(D_2|a = u) + 0.5 entropy(D_2|a = r) = 1 - (0 + 0) = 1$

- 3. Compare the best with the second best result: $IG(time, D_2) - IG(area, D_2) = 1 - 1 = 0 < \varepsilon_2 \approx 0.634$
 - \rightarrow continue with more samples!

Now take two more records (the first four records)

Person	Time since license	Gender	Area	Risk class
1	1-2	m	urban	low
2	2-7	m	rural	high
3	>7	f	rural	low
4	1-2	f	rural	high

Again, proceed as follows:

- 1. Compute the entropy for the first four records: $entropy(D_4) = 1$, due to the fact that both classes have a probability of 50%
- 2. Compute the information gain (IG) for all three attributes (time, gender, area): $IG(time, D_4) = entropy(D_4) - \frac{2}{4} entropy(D_4|t = 1 - 2) + \frac{1}{4} entropy(D_4|t = 2 - 7) + \frac{1}{4} entropy(D_4|t > 7) = 1 - (\frac{2}{4} * 1 + 0 + 0) = 0.5$

$$IG(gender, D_4) = entropy(D_4) - \frac{2}{4} entropy(D_4|g = m) + \frac{2}{4} entropy(D_4|g = f) = 1 - \left(\frac{1}{2} * 1 + \frac{1}{2} * 1\right) = 0$$

$$IG(area, D_4) = entropy(D_4) - \frac{1}{4}entropy(D_4|a = u) + \frac{3}{4}entropy(D_4|a = r) \approx 1 - (0 + \frac{3}{4} * 0.637) \approx 0.523$$

- 3. Compare the best with the second best result: $IG(time, D_4) - IG(area, D_4) = 0.523 - 0.5 \approx 0.023 < \varepsilon_4 \approx 0.448$
 - \rightarrow continue with more samples!

Now take two more records (the first six records)

Person	Time since license	Gender	Area	Risk class
1	1-2	m	urban	low
2	2-7	m	rural	high
3	>7	f	rural	low
4	1-2	f	rural	high
5	>7	m	rural	high
6	1-2	m	rural	high

Again, proceed as follows:

1. Compute the entropy for the first six records:

$$entropy(D_6) = -\frac{2}{3}\log\left(\frac{2}{3}\right) - \frac{1}{3}\log\left(\frac{1}{3}\right) \approx 0.637$$

2. Compute the information gain (IG) for all three attributes (time, gender, area): $IG(time, D_6) = entropy(D_6) - \frac{3}{6}entropy(D_6|t = 1 - 2) + \frac{1}{6}entropy(D_6|t = 2 - 7) + \frac{2}{6}entropy(D_6|t > 7) \approx 0.637 - (\frac{3}{6}*0.637 + 0 + \frac{2}{6}*1) \approx -0.015$

$$IG(gender, D_6) = entropy(D_6) - \frac{4}{6}entropy(D_6|g = m) + \frac{2}{6}entropy(D_6|g = f) \approx 0.637 - \left(\frac{4}{6} * 0.562 + \frac{2}{6} * 1\right) \approx -0.072$$

$$IG(area, D_6) = entropy(D_6) - \frac{1}{6}entropy(D_6|a = u) + \frac{5}{6}entropy(D_6|a = r) \approx 0.637 - \left(0 + \frac{5}{6} * 0.5004\right) \approx 0.220$$

- 3. Compare the best with the second best result: $IG(area, D_6) - IG(time, D_6) = 0.220 - -0.015 \approx 0.235 < \varepsilon_6 \approx 0.366$
 - \rightarrow continue with more samples!

Now take two more records (all eight records)

Person	Time since license	Gender	Area	Risk class
1	1-2	m	urban	low
2	2-7	m	rural	high
3	>7	f	rural	low
4	1-2	f	rural	high
5	>7	m	rural	high
6	1-2	m	rural	high
7	2-7	f	urban	low
8	2-7	m	urban	low

Again, proceed as follows:

- 1. Compute the entropy for all eight records: $entropy(D_8) = 1$
- 2. Compute the information gain (IG) for all three attributes (time, gender, area): $IG(time, D_8) = entropy(D_8) - \frac{3}{8}entropy(D_8|t = 1 - 2) + \frac{3}{8}entropy(D_8|t = 2 - 7) + \frac{2}{8}entropy(D_8|t > 7) \approx 1 - (\frac{3}{8} * 0.637 + \frac{3}{8} * 0.637 + \frac{2}{8} * 1) \approx 0.273$

$$IG(gender, D_8) = entropy(D_8) - \frac{5}{8}entropy(D_8|g = m) + \frac{3}{8}entropy(D_8|g = f) \approx 1 - \left(\frac{5}{8} * 0.673 + \frac{3}{8} * 0.637\right) \approx 0.341$$

$$IG(area, D_8) = entropy(D_8) - \frac{3}{8}entropy(D_8|a = u) + \frac{5}{8}entropy(D_8|a = r) \approx 1 - (0 + \frac{5}{8} * 0.5004) \approx 0.687$$

- 3. Compare the best with the second best result: IG(area, D₈) - IG(gender, D₈) = 0.687 - 0.341 ≈ 0.347 > ε₈ ≈ 0.317 → split at 'area' attribute!
 - \rightarrow New leafs are empty and have no 'area' attribute.
 - \rightarrow Further splits are not required until new data arrives.

Computing the value of δ at which the tree would still consist only of the leaf:

The minimal ε for which a further split would be required: 0.347

$$\varepsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}} \Rightarrow 2n\varepsilon^2 = \ln(1/\delta) \Rightarrow \delta = \frac{1}{\exp(2n\varepsilon^2)} \approx \frac{1}{\exp(16*0.347^2)} \approx 0.1456$$