Big Data Management and Analytics

WS 2016/17
Tutorial 9: Stream Algorithms

Assignment 9-1 K-Buckets

Given the histogram as seen below, execute the K-Buckets Histogram algorithm for inserts and deletes, assuming the following rules:

- The histogram consists of constantly $k=5$ buckets.
- The upper threshold (MAX) per bucket is 10 , the lower threshold ($M I N$) is 2 .
- For split-and-merge operations: a split occurs when the size of a bucket would otherwise exceed MAX; a merge occurs between the two consecutive buckets that were not product of the preceding split with the lowest overall sum of sizes.
- For merge-and-split operations: a merge occurs with the neighbour bucket that has the smallest size, when the size of a bucket would otherwise be below MIN.

INSERTING Insert the items of the given sequence into the histogram, until the first overflow occurs. Execute the resulting split-and-merge and move on to the next section (deleting). Each item is denoted as the index of its respective bucket.

$$
\text { Sequence }=3,1,3,5,2,3,4,1,5,3
$$

DELETING Starting with the resulting histogram of the insert section, remove the items of the given sequence from the histogram, until the first underflow occurs. Execute the resulting merge-and-split. Each item is denoted as the index of its respective bucket.

$$
\text { Sequence }=1,3,4,5,4,3,2,5,1,2
$$

Assignment 9-2 CUSUM - Change Detection

Given a mean value $\omega=3$ and a threshold value $\alpha=8$, execute the Cumulative Sum algorithm for change detection on the following sequence:

$$
\text { Sequence }=2,3,7,4,0,2,5,6,8,7
$$

n	$\mathrm{x}_{n}-\omega$	G_{n}
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Assignment 9-3 Exponential Histograms

For the given sequence, construct an Exponential Histogram using a window size $N=8$ and an error parameter $\epsilon=1 / 2$.

$$
\text { Sequence }=\times, \times, \circ, \times, \circ, \circ, \times, \times, \times, \times, \circ, \times, \times, \circ, \times, \times
$$

Estimate the number of \times within the window at time $t=13$ and compare it to the actual number.

Assignment 9-4 Hoeffding trees

Predict the risk class of a car driver based on the following attributes:

- Time since getting the driving license ($1-2$ years, $2-7$ years, >7 years)
- Gender (male, female)
- Residential area (urban, rural)

These are the first 8 examples.

Person	Time since license	Gender	Area	Risk class
1	$1-2$	m	urban	low
2	$2-7$	m	rural	high
3	>7	f	rural	low
4	$1-2$	f	rural	high
5	>7	m	rural	high
6	$1-2$	m	rural	high
7	$2-7$	f	urban	low
8	$2-7$	m	urban	low

- Incrementally construct a Hoeffding tree for this example.

Use information gain and $\delta=0.2$ and $N_{\min }=2$.

- Compute the value of δ at which the tree would still consist of the leaf only.

