Big Data Management and Analytics Assignment 4

- Given two matrices A, B :

$$
\begin{gathered}
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right) \\
A * B=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{21} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right)
\end{gathered}
$$

- A, B can be rewritten as:

$$
A=(I, J, V), B=(J, K, W) \text { where }[0]:=\text { row, }[1]:=\text { column and }[2]=\text { values }
$$

(a) Describe the steps which are required to perform a matrix multiplication using MapReduce.

Steps:

- 1. Map

$$
\left(i, j, a_{i j}\right) \rightarrow\left(j,\left(A, i, a_{i j}\right)\right) \quad\left(j, k, b_{j k}\right) \rightarrow\left(j,\left(B, k, b_{j k}\right)\right)
$$

- 2. Join

$$
\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \rightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)
$$

- 3. Map

$$
\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right) \rightarrow\left((i, k),\left(a_{i j} b_{j k}\right)\right)
$$

- 4. ReduceByKey

$$
\left((i, k),\left[\left(a_{i j} b_{j k}\right)\right]\right) \rightarrow\left((i, k), \sum\left(a_{i j} b_{j k}\right)\right)
$$

Matrix Multiplication - Example

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \quad B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{cc}
7 & 8 \\
9 & 10 \\
11 & 12
\end{array}\right) \quad A \cdot B=C=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)=\left(\begin{array}{cc}
58 & 64 \\
139 & 154
\end{array}\right)
$$

1. Map: $\quad\left(i, j, a_{i j}\right) \longrightarrow\left(j,\left(A, i, a_{i j}\right)\right)$,

$$
\begin{aligned}
& \\
& \begin{array}{c}
\text { row col } \\
\downarrow \\
\downarrow \\
\\
(1,1,1)
\end{array} \\
& \\
&(1,2,2) \text { col ID row } \\
& \downarrow(1,(a, 1,1)) \\
&(1,3,3) \longrightarrow(3,(a, 1,2)) \\
&(2,1,4) \longrightarrow(1,(a, 1,3)) \\
&(2,2,5) \longrightarrow(2,(a, 2,5)) \\
&(2,3,6) \longrightarrow(3,(a, 2,6))
\end{aligned}
$$

$$
\left(j, k, b_{j k}\right) \longrightarrow\left(j,\left(B, k, b_{j k}\right)\right)
$$

$$
\begin{aligned}
B: \quad(1,1,7) & \longrightarrow(1,(b, 1,7)) \\
(1,2,8) & \longrightarrow(1,(b, 2,8)) \\
(2,1,9) & \longrightarrow(2,(b, 1,9)) \\
(2,2,10) & \longrightarrow(2,(b, 2,10)) \\
(3,1,11) & \longrightarrow(3,(b, 1,11)) \\
(3,2,12) & \longrightarrow(3,(b, 2,12))
\end{aligned}
$$

2. Join: $\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \longrightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)$

A	B :		
$\begin{array}{cc} \text { Colj } \quad \text { Row i } \\ \downarrow & \downarrow \\ (1,(a, 1,1)) \end{array}$		(1, [(a,1,) , (b, 1, 7)])	$\stackrel{\downarrow}{(1,[(a, 1,1),(b, 2,8)])}$
(2, (a, 1, 2))	$(1,(b, 2,8))$		
(3, (a, 1, 3))	(2, (b, 1, 9))		
(1, (a, 2, 4))	(2, (b, 2, 10))		
(2, (a, 2, 5))	(3, (b, 1, 11))		
(3, (a, 2, 6))	(3, (b, 2, 12))		

"Join over j"
2. Join: $\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \longrightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)$

围新

"Join over j"
2. Join: $\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \longrightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)$

A :	B :		
Colj Rowi	Row j Colk		$\stackrel{\downarrow}{(1,[(a, 1,1),(b, 2,8)])}$
(1, (a, 1, 1))	$(1,(b, 1,7))$	$(1,[(a, 2,4),(b, 1,7)])$	(1, [(a,2,4), (b, 2, 8)])
(2, (a, 1, 2))	(1, (b, 2, 8))		
$(3,(a, 1,3))$	$(2,(b, 1,9))$	$(2,[(a, 1,2),(b, 1,9)])$	(2, [(a, 1, 2), (b, 2, 10)])
(1, (a, 2, 4))	$(2,(b, 2,10))$		
(2, (a, 2, 5))	$(3,(b, 1,11))$		
(3, (a, 2, 6))	$(3,(b, 2,12))$		

"Join over j"

2. Join: $\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \longrightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)$

A :	B :		
Colj Rowi	Row j Colk	$(1,[(a, 1,1),(b, 1,7)])$	$\stackrel{\downarrow}{(1,[(a, 1,1),(b, 2,8)])}$
$\stackrel{\downarrow}{\downarrow}(1,(a, 1,1))$	$\begin{gathered} \stackrel{\downarrow}{\vee} \\ (1,(b, 1,7)) \end{gathered}$	$(1,[(a, 1,1),(b, 1,7)])$	$(1,[(a, 2,4),(b, 2,8)])$
(2, (a, 1, 2))	$(1,(b, 2,8))$		
(3, (a, 1, 3))	(2, (b, 1, 9))	$(2,[(a, 1,2),(b, 1,9)])$	(2, [(a, 1, 2), (b, 2, 10)])
(1, (a, 2, 4))	(2, (b, 2, 10))	(2, [(a,2,5), (b, 1, 9)])	(2, [(a,2,5), (b, 2, 10)])
$(2,(a, 2,5))$	(3, (b, 1, 11))		
(3, (a, 2, 6))	(3, (b, 2, 12))		

"Join over j"
2. Join: $\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \longrightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)$

"Join over j"
2. Join: $\left(j,\left(A, i, a_{i j}\right)\right) \bowtie\left(j,\left(B, k, b_{j k}\right)\right) \longrightarrow\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right)$

A :	B :		
Colj Row i	$\underset{\downarrow}{\text { Row j }}$ Colk	$\stackrel{\downarrow}{(1,[(a, 1,1),(b, 1,7)])}$	$\stackrel{\downarrow}{(1,[(a, 1,1),(b, 2,8)])}$
(1, (a, 1, 1))	$(1,(b, 1,7))$	(1, [(a,2,4), (b, 1, 7)])	(1, [(a,2,4), (b, 2, 8)])
(2, (a, 1, 2))	$(1,(b, 2,8))$		
(3, (a, 1, 3))	(2, (b, 1, 9))	(2, [(a, 1, 2), (b, 1, 9)])	(2, [(a, 1, 2), (b, 2, 10)])
(1, (a,2, 4))	(2, (b, 2, 10))	(2, [(a,2,5), (b, 1, 9)])	(2, [(a,2,5), (b, 2, 10)])
(2, (a, 2, 5))	$(3,(b, 1,11))$	(3, [(a, 1, 3), (b, 1, 11)])	(3, [(a, 1, 3), (b, 2, 12)])
(3, (a, 2, 6))	(3, (b, 2, 12))	$(3,[(a, 2,6),(b, 1,11)])$	$(3,[(a, 2,6),(b, 2,12)])$

"Join over j"

3. Map: $\left(j,\left[\left(A, i, a_{i j}\right),\left(B, k, b_{j k}\right)\right]\right) \longrightarrow\left((i, k),\left(a_{i j} b_{j k}\right)\right)$

4. ReduceByKey: (lambda $x, y: x+y)$

$\longrightarrow((1,1), 1 \cdot 7))$	$\begin{gathered} i \\ i \\ \left.\left.\left(\begin{array}{c} v \\ \downarrow \\ \hline \end{array}, 2\right), 1 \cdot 8\right)\right) \end{gathered}$	$((1,1), 1 \cdot 7+2 \cdot 9+3 \cdot 11))$
$((2,1), 4 \cdot 7))$	$((2,2), 4 \cdot 8))$	
$\longrightarrow((1,1), 2 \cdot 9))$	$((1,2), 2 \cdot 10))$	
$((2,1), 5 \cdot 9))$	((2,2), 5-10))	
$\longrightarrow((1,1), 3 \cdot 11))$	$((1,2), 3 \cdot 12))$	
((2,1),6•11))	((2,2), 6-12))	

4. ReduceByKey: (lambda $x, y: x+y)$

$$
\begin{aligned}
& \underset{((2,1), 5 \cdot 9))}{((1,1), 2 \cdot 9))} \underset{((2,2), 5 \cdot 10))}{((1,2), 2 \cdot 10)} \longrightarrow \\
& ((2,1), 5 \cdot 9)) \quad((2,2), 5 \cdot 10)) \\
& ((1,1), 3 \cdot 11)) \longrightarrow((1,2), 3 \cdot 12)) \\
& ((2,1), 6 \cdot 11)) \quad((2,2), 6 \cdot 12))
\end{aligned}
$$

4. ReduceByKey: (lambda $x, y: x+y)$

$\begin{gathered} i v \\ \vdots \\ \downarrow \\ ((1,1), 1 \cdot 7) \end{gathered}$	$\begin{gathered} i, k \\ \downarrow \downarrow \downarrow, ~ \\ ((1,2), 1 \cdot 8)) \end{gathered}$	$((1,1), 1 \cdot 7+2 \cdot 9+3 \cdot 11))$	$((1,2), 1 \cdot 8+2 \cdot 10+3 \cdot 12)$
$\longrightarrow((2,1), 4 \cdot 7))$	$((2,2), 4 \cdot 8))$	$((2,1), 4 \cdot 7+5 \cdot 9+6 \cdot 11))$	$(1,2), 1 \cdot 8+2-10+3-12)$
$((1,1), 2 \cdot 9))$	$((1,2), 2 \cdot 10))$		
$\longrightarrow((2,1), 5 \cdot 9))$	((2,2), 5 - 10))		
$((1,1), 3 \cdot 11))$	$((1,2), 3 \cdot 12))$		
$\longrightarrow((2,1), 6 \cdot 11))$	((2,2),6-12))		

4. ReduceByKey: (lambda $x, y: x+y)$

$$
\begin{aligned}
& ((1,1), 1 \cdot 7+2 \cdot 9+3 \cdot 11)) \quad((1,2), 1 \cdot 8+2 \cdot 10+3 \cdot 12) \\
& ((2,1), 4 \cdot 7+5 \cdot 9+6 \cdot 11)) \quad((2,2), 4 \cdot 8+5 \cdot 10+6 \cdot 12) \\
& \begin{array}{lr}
((1,1), 2 \cdot 9)) \\
((2,1), 5 \cdot 9)) \longrightarrow((2,2), 2 \cdot 10)) \\
((1,1), 3 \cdot 11)) \\
((2,1), 6 \cdot 11)) \longrightarrow(((2,2), 3 \cdot 12))
\end{array}
\end{aligned}
$$

4. ReduceByKey: (lambda $x, y: x+y)$

$\begin{gathered} i \\ \vdots \\ \substack{k \\ \downarrow \\ ((1,1), 1 \cdot 7))} \end{gathered}$	$\begin{gathered} i \quad k \\ ((1,2), 1 \cdot 8)) \end{gathered}$	$((1,1), 1 \cdot 7+2 \cdot 9+3 \cdot 11))$	$((1,2), 1 \cdot 8+2 \cdot 10+3 \cdot 12)$
$((2,1), 4 \cdot 7))$	$((2,2), 4 \cdot 8))$	$((2,1), 4 \cdot 7+5 \cdot 9+6 \cdot 11))$	$((2,2), 4 \cdot 8+5 \cdot 10+6 \cdot 12)$
$((1,1), 2 \cdot 9))$	((1,2), 2 $\cdot 10)$)		
$((2,1), 5 \cdot 9))$	$((2,2), 5 \cdot 10))$		
$((1,1), 3 \cdot 11))$	$((1,2), 3 \cdot 12))$	$C=\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)=\left(\begin{array}{cc}58 & 64 \\ 139 & 154\end{array}\right)$	
((2, 1), 6-11))	((2,2), 6-12))		

[^0]
Assignment 4-2

(a) Extend the word count task by computing the average occurrences of each word in a set of documents.

Steps:

- 1. Partition: Split text into block of words
- 2. Map: apply a counter on each word
- 3. Shuffle \& Sort: put words which are the same into their own block
- 4. Reduce: sum up the \# of occurrences
- 5. Map: divide every number of occurrences by the total \# of words
(b) Now compute the standard deviation given the number of occurences of every word. Describe the steps which are necessary for the task using MapReduce

Steps:

- 5. Map: divide every number of occurrences by the total \# of words
- 6. Reduce: sum all relative occurrences and divide them by the total \# of distinct words
- 7. Map: substract from all the values in 5. the computed average (calculate deviations)
- 8. Reduce: sum up all the calculated deviations and divide them by the number of distinct words (calculate variance) and take the square root

Assignment 4-2 (c)

- Partition:
- Map:

(How,1)
(much,1)
(ground,1)
(would,1)
(a,1)
(groundhog,1)
(hog,1)
(if,1)
(a,1)
(groundhog,1)

- Partition:

- Map:

(could)
(hog,1)
(ground,1)
(a,1)
(groundhog,1)
(would,1)
(hog,1)
(all,1)
(the,1)
(ground,1)

- Partition:

- Map:

- Shuffle \& Sort:

(would, 1)
(would, 1)
$(a, 1)$
$(a, 1)$
$(a, 1)$
$(a, 1)$

(would, 1)
(would, 1)

$(a, 1)$
$(a, 1)$
$(a, 1)$
$(a, 1)$

> (groundhog, 1) (groundhog, 1) $($ groundhog, 1) $($ groundhog, 1)

(groundhog, 1)
(groundhog, 1)
(groundhog, 1)
(groundhog, 1)

(hog, 1)
(hog, 1)
(hog, 1)
(hog, 1)
(hog, 1)

(if, 1)
(if, 1)

(could, 1)
(could, 1)
(could, 1)

(he, 1)

Assignment 4-2

- Reduce:

(much, 1)
(ground, 2)
(would, 2)
$(a, 4)$
(groundhog, 4)

(hog,5)
(if, 2)
(could, 3)
(all, 1)

$(a, 4)$
(the, 1)
(he, 1)

Assignment 4-2

- Map: (total \# of words: 12)
(how, 0.083)
(much, 0.083)
(ground, 0.166)
(would, 0.166)
(a, 0.333)
(groundhog, 0.333)
(hog, 0.416)

(if, 0.166)
(could, 0.25)
(all, 0.083)

(the, 0.083)
(he, 0.083)

Assignment 4-2

- Reduce: (total \# of words: 12)
(how, 0.083)
(much, 0.083)
(ground, 0.166)
(would, 0.166)
(a, 0.333)
(groundhog, 0.333)
(hog, 0.416)

(if, 0.166)
(could, 0.25)
(all, 0.083)

(the, 0.083)
(he, 0.083)

$$
\frac{\Sigma}{12}=2.245 / 12=0.187
$$

[^0]: Number of elements: $i \cdot k$

