Big Data Management \& Analytics

EXERCISE 9 - SVD, CUR
11th of January, 2016

PCA
REVISION

PCA - Summary

1. Center the data $X: x_{i}-\mu_{i}$
2. Calculate the covariance-matrix: $\Sigma=\frac{1}{n} X^{T} X$
3. Calculate the eigenvalues and eigenvectors of Σ

- Calculate eigenvalues λ by finding the zeros of the characteristic polynomial: $\operatorname{det}(\Sigma-\lambda I)$
- Calculate the eigenvectors by solving $(\Sigma-\lambda I) v=0$

4. Select the k eigenvectors with the biggest eigenvalues and create $\mathrm{P}=\left(v_{1}, v_{2}, \ldots v_{k}\right)$
5. Transform the original ($\mathrm{n} \times \mathrm{d}$) matrix X to a $(\mathrm{n} \times \mathrm{k})$ representation: $X P=Y$

Goals of PCA

- Detect hidden correlations
- Remove redundant and noisy features
- Interpretation and visualization
- Easier storage and processing of dat
-> Most helpful when there is a linear relationship between observed and hidden variables

Problems with PCA

When applying PCA to a dataset of unknown structure

1. Unnormalized data can skew the result -> before PCA, norm the data!
2. Relevant structures might get lost
original dataset in 2D

dataset reconstructed from 1st principal component

Problems with PCA

3. Outliers can skew the PCA result
original dataset in 2D with outlier

dataset reconstructed from 1st principal component

Single Value Decomposition (SVD)

REVISION AND EXERCISE

SVD

Any matrix X can be written as $X=U \Sigma V^{T}$
(singular value decomposition)

- \boldsymbol{X} Data matrix ($n \times d$)
- V Right singular vectors: eigenvectors of $X^{T} X$
- \boldsymbol{U} Left-singular vectors of X : eigenvectors of $X X^{T}$
$\circ \boldsymbol{\Sigma}$ Singular Values: square roots of eigenvalues (elements on diagonal)

https://de.wikipedia.org/wiki/Singul\�\�rwertzerlegung

Usage example: Image compression

SVD

Let $X_{n x d}$ be a data matrix and let k be its rank. We can decompose X into matrices U, Σ, V as follows:

$$
\begin{gathered}
\boldsymbol{X} \\
\left(\begin{array}{ccc}
x_{1,1} & \ldots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \ldots & x_{n, d}
\end{array}\right)=\left(\begin{array}{ccc}
u_{1,1} & \ldots & u_{1, n} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \ldots & u_{n, n}
\end{array}\right) *\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{d}
\end{array}\right) *\left(\begin{array}{ccc}
v_{1,1} & \cdots & v_{1, d} \\
\vdots & \ddots & \vdots \\
v_{d, 1} & \cdots & v_{d, d}
\end{array}\right) \\
\mathrm{n} \times \mathrm{d} \\
\mathrm{n} \times \mathrm{n}
\end{gathered}
$$

SVD- How to find matrices?

Remember the Eigenwertproblem:

$$
A v=\lambda v \quad \text { or } \quad A T=T \Lambda
$$

$$
\begin{aligned}
& \mathrm{v}=\text { eigenvector } \\
& \lambda=\text { eigenvalue } \\
& \mathrm{T}=\text { eigenvector matrix } \\
& \Lambda \text { diagonal eigenvalue matrix }
\end{aligned}
$$

For $X=U \Sigma V^{T}$

- Find V : $\left(X^{T} X\right) V=V \Sigma^{2}$
- Find U : $\left(X X^{T}\right) U=U \Sigma^{2}$. or use: $X V=U \Sigma \quad u_{i}=\frac{1}{\sigma_{1}} X * v_{i}$

SVD - Example

Given Matrix $M \quad M=\left(\begin{array}{cc}1 & 1 \\ 1 & 1 \\ 1 & -1\end{array}\right) \quad M^{T} M=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$
Eigenvalues: $\operatorname{det}\left(M^{T} M-\lambda \cdot I_{2 \times 2}\right)=\lambda^{2}-6 \lambda+8=(\lambda-4)(\lambda-2)$

$$
\lambda_{1}=4 \rightarrow \text { singular value } \sigma_{1}=\sqrt{\lambda_{1}}=2 \quad \lambda_{2}=2 \rightarrow \text { singular value } \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{2}
$$

Eigenvectors: $v_{1}=\binom{1}{1} \quad \xrightarrow{\text { normalize }} \quad v_{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$

Eigenpairs

$\left(4,\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right)\left(2,\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}\right)$

SVD - Example

Eigenvalue decomposition $\quad X=U \Sigma V^{T}$
Now we already know: $\quad \Sigma=\left(\begin{array}{cc}2 & 0 \\ 0 & \sqrt{2} \\ 0 & 0\end{array}\right) \quad V=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$

How to find U ? Multiplying the $\operatorname{SVD} M=U \Sigma V^{T}$ with V on each side yields $M V=U \Sigma$

$$
u_{1}=\frac{1}{\sigma_{1}} \cdot M \cdot v_{1}=\frac{\sqrt{2}}{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad u_{2}=\frac{1}{\sigma_{2}} \cdot M \cdot v_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

SVD - Example

Note: At this point we could write the SVD as follows:
$M=U \Sigma V^{T}=\left(\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & * \\ \frac{1}{\sqrt{2}} & 0 & * \\ 0 & 1 & *\end{array}\right) \cdot\left(\begin{array}{cc}2 & 0 \\ 0 & \sqrt{2} \\ 0 & 0\end{array}\right) \cdot\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$
How to find u_{3} ? $\quad u_{3}=u_{1} \times u_{2}=\left(\begin{array}{c}\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0\end{array}\right)$
$\mathrm{u}_{1}, \mathrm{u}_{2}$ and u_{3} must build an orthonormal basis!

SVD - Example

One-dimensional approximation of matrix M

$$
\begin{aligned}
& M=U \Sigma V^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & * \\
\frac{1}{\sqrt{2}} & 0 & * \\
0 & 1 & *
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & 0 \\
0 & \sqrt{2} \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
& M \approx U_{1} \Sigma_{1} V_{1}^{T} \approx\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{\sqrt{\sqrt{2}}}{0} \\
0
\end{array}\right) \cdot(2) \cdot\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

CUR

REVISION AND EXERCISE

CUR

Alternative to SVD, which better respects the structure of the data

Definition CUR : A CUR matrix decomposition is a low-rank approximation explicitly expressed in terms of a small number of columns and rows of A

Example

	$\begin{aligned} & 3 \\ & \frac{3}{7} \\ & \frac{7}{x} \end{aligned}$	$\frac{\xrightarrow[\overline{\bar{D}}]{\triangle}}{}$	$\begin{aligned} & \stackrel{0}{0} \\ & \sum_{\substack{10}}^{\sim} \end{aligned}$		$\stackrel{\text { 겔 }}{\text { ¢ }}$
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

Find CUR-decomposition of the given matrix with two rows and two columns!
Sample size $r=2$

Steps

1. Create sample matrices C and R
2. Construct U from C and R

1a. Create sample matrix C

Sample columns for C :

Input: matrix $M \in \mathbb{R}^{m x n}$, sample size r
Output: $C \in \mathbb{R}^{m x r}$

1. For $x=1: n$ do
2. $\mathrm{P}(\mathrm{x})=\sum_{i}\left(m_{i, x}\right)^{2} /\|M\|_{F}^{2}$
3. For $y=1$: r do

Frobenius-Norm:

$$
\|M\|_{F}=\sqrt{\sum_{i} \sum_{j}\left(m_{i, j}\right)^{2}}
$$

4. Pick $z \in 1: n$ based on $\operatorname{Prob}(x)$
5. $\quad \mathrm{C}(:, \mathrm{y})=\mathrm{M}(:, \mathrm{z}) / \sqrt{r * P(z)}$

1a. Create sample matrix C

$$
\begin{aligned}
& \sum_{i} m_{i, 1}=\sum_{i} m_{i, 2}=\sum_{i} m_{i, 3}=1^{2}+3^{2}+4^{2}+5^{2}=51 \\
& \sum_{i} m_{i, 4}=\sum_{i} m_{i, 5}=4^{2}+5^{2}+2^{2}=45 \\
& \text { FrobeniusNorm : }\|M\|_{F}^{2}=243=3 * 51+2 * 45 \\
& \rightarrow P\left(x_{1}\right)=P\left(x_{2}\right)=P\left(x_{3}\right)=\frac{51}{243}=0.210 \\
& \rightarrow P\left(x_{4}\right)=P\left(x_{5}\right)=\frac{45}{243}=0.185
\end{aligned}
$$

1a. Create sample matrix C

1b. Create sample matrix R

	$\begin{aligned} & \frac{3}{\mathbf{m}} \\ & \frac{7}{\bar{x}} \end{aligned}$	$\stackrel{\geqq}{\overline{\bar{D}}}$	$\sum_{\substack{\infty \\ j}}^{\substack{\infty}}$		
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	O	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

$$
\begin{aligned}
& \sum_{j} m_{4, j}=5^{2}+5^{2}+5^{2}=75 \\
& \sum_{j} m_{5, j}=4^{2}+4^{2}=32
\end{aligned}
$$

FrobeniusNorm: $\|M\|_{F}^{2}=243$
$P\left(y_{4}\right)=\frac{75}{243}=0.309$
$P\left(y_{5}\right)=\frac{32}{243}=0.132$

1b. Create sample matrix C

	$\begin{aligned} & \frac{3}{\mathbf{m}} \\ & \frac{7}{7} \end{aligned}$		$\sum_{\frac{9}{\omega}}^{\stackrel{0}{m}}$		-
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

$$
\begin{aligned}
& \text { Row } 5 * \frac{1}{\sqrt{r \cdot P\left(y_{4}\right)}}=\frac{1}{\sqrt{2 \cdot 0.309}} \\
& \text { Row } 6 * \frac{1}{\sqrt{r \cdot P\left(y_{5}\right)}}=\frac{1}{\sqrt{2 \cdot 0.132}} \\
& R=\left(\begin{array}{ccccc}
6.36 & 6.36 & 6.36 & 0 & 0 \\
0 & 0 & 0 & 7.78 & 7.78
\end{array}\right)
\end{aligned}
$$

2. Construct U from C and R

a) Create rxr matrix W as intersection of C and R
b) Apply SVD on $W=X \Sigma Y^{T}$
c) Compute Σ^{+}as the pseudoinverse of Σ
d) Compute $U=Y\left(\Sigma^{+}\right)^{2} X^{T}$

2. Construct U from C and R

	$\begin{aligned} & 3 \\ & \frac{3}{7} \\ & \frac{7}{x} \end{aligned}$	$\xrightarrow{\text { D }}$			-
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

a) Create matrix W: $\quad W=\left(\begin{array}{ll}5 & 5 \\ 0 & 0\end{array}\right)$
b) Apply SVD on W:

$$
W=X \Sigma Y^{T}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{50} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

c) Pseudo-Inverse of Σ : $\quad \Sigma^{+}=\left(\begin{array}{cc}\frac{1}{\sqrt{50}} & 0 \\ 0 & 0\end{array}\right)$
d) Calculate $U=Y\left(\Sigma^{+}\right)^{2} X^{T}=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right) \cdot\left(\begin{array}{cc}\frac{1}{50} & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}\frac{1}{50 \sqrt{2}} & 0 \\ \frac{1}{50 \sqrt{2}} & 0\end{array}\right)$

Result of CUR decomposition

