Big Data Management \& Analytics

EXERCISE 8 - TEXT PROCESSING, PCA
21st of December, 2015
Sabrina Friedl
LMU Munich

Product Component Analysis (PCA)

REVISION AND EXAMPLE

Goals of PCA

Find a lower-dimensional representation of data to:

- Detect hidden correlations
- Remove (summarize redundant, irrelevant or noisy features

- Fascilitate interpretation and visualization (actually visualization is possible only for few dimensions)
- Make storage and processing of data easier

Idea of PCA

A good data representation retains the main differences between

 data points but eliminates irrelevant variances- Given matrix X : n data points with d dimensions (features)
- Find k directions (linear combinations of dimensions) with highest variance $=$ principal components: $v_{1}, v_{2}, \ldots v_{k}$
- Project data points onto these directions
- General Form: $X P=Y$
$(\mathrm{n} \times \mathrm{d}) *(\mathrm{~d} \times \mathrm{k})=(\mathrm{n} \times \mathrm{k})$
$\mathrm{X}=$ raw data matrix
$P=\left(v_{1}, v_{2}, \ldots v_{k}\right)$ transformation matrix
$Y=k$-dimensional representation of X

PCA - Graphical Intuition

Rotate the data space in a way that the direction with the largest variance is placed on an axis of the data space

How to get Principal Components?

Calculate the eigenvalues and eigenvectors of the covariance matrix

Sigma here is the
name of the matrix, not the sum symbol!
$\Sigma_{D}=\left(\begin{array}{ccc}\operatorname{VAR}\left(X_{1}\right) & \cdots & \operatorname{COV}\left(X_{1}, X_{d}\right) \\ \vdots & \ddots & \vdots \\ \operatorname{COV}\left(X_{d}, X_{1}\right) & \cdots & \operatorname{VAR}\left(X_{d}\right)\end{array}\right)$

$$
\begin{aligned}
& \operatorname{COV}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right) \\
& \operatorname{VAR}(X)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\operatorname{COV}(X, X)
\end{aligned}
$$

Describes the pairwise correlation between all features

For a centralized data matrix X with $\mu=0$ we
can calculate the covariance matrix as:

\vdots \& \ddots \& \vdots

\operatorname{COV}\left(X_{d}, X_{1}\right) \& \cdots \& \operatorname{VAR}\left(X_{d}\right)\end{array}\right)\)

Eigenvalues and Eigenvectors

Let A be a square $d x d$ matrix. If there exists a real scalar λ and a $d x 1$ vector $v \neq 0$, such that:

$$
A v=\lambda v
$$

then λ is called an eigenvalue of A and v is the associated eigenvector.

How to find eigenvalues / eigenvectors of A ?

- Solving the equation: $\operatorname{det}\left(A-\lambda \mathrm{I}_{d x d}\right)=0$ yields the eigenvalues
- For each eigenvalue λ_{i}, we find its eigenvector by solving the system of equations $\left(A-\lambda_{i} I_{d x d}\right) v_{i}=0$

Dimension Reduction

For n dimensions of X we get n eigevalues and eigenvectors. The transformation matrix is then constructed by putting the eigenvectors as columns into a matrix: $\mathrm{T}=\left(v_{1}, v_{2}, \ldots v_{n}\right)$

Eigendecomposition: $\Sigma=T \Lambda T^{T}$

$$
\begin{aligned}
& \Sigma=\text { covariance matrix } \\
& T=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right) \text { transformation matrix } \\
& \Lambda=\text { diagonalised matrix with eigenvalues on diagonal }
\end{aligned}
$$

To get a k-dimensional representation Y of (centered) data X we take only the first k eigenvectors (principal components) of T and call this matrix P .

We calculate: $\quad \boldsymbol{X P}=\boldsymbol{Y}$
To transform back: $\mathrm{Z}=Y P^{T}$

PCA - Summary of Steps

1. Center the data $X: x_{i}-\mu_{i}$
2. Calculate the covariance-matrix: $\Sigma=\frac{1}{n} X^{T} X$
3. Calculate the eigenvalues and eigenvectors of Σ

- Calculate eigenvalues λ by finding the zeros of the characteristic polynomial: $\operatorname{det}(\Sigma-\lambda I)$
- Calculate the eigenvectors by solving $(\Sigma-\lambda I) v=0$

4. Select the k eigenvectors with the biggest eigenvalues and create $\mathrm{P}=\left(v_{1}, v_{2}, \ldots v_{k}\right)$
5. Transform the original $(\mathrm{n} \times \mathrm{d})$ matrix X to a $(\mathrm{n} \times \mathrm{k})$ representation: $X P=Y$

Useful links

- KDD II script: http://www.dbs.ifi.Imu.de/Lehre/KDD II/WS1516/skript/KDD2-2HDData.DimensionalityReduction.pdf
- A tutorial about PCA:
http://www.cs.otago.ac.nz/cosc453/student tutorials/principal components.pdf

