Big Data Management and Analytics WS 2015/16

Tutorial 6: Stream Algorithms

Assignment 6-1 K-Buckets

Given the histogram as seen below, execute the K-Buckets Histogram algorithm for inserts and deletes, assuming the following rules:

- The histogram consists of constantly k = 5 buckets.
- The upper threshold (MAX) per bucket is 10, the lower threshold (MIN) is 2.
- For split-and-merge operations: a split occurs when the size of a bucket would otherwise **exceed** MAX; a merge occurs between the two consecutive buckets that were not product of the preceding split with the lowest overall sum of sizes.
- For merge-and-split operations: a merge occurs with the neighbour bucket that has the smallest size, when the size of a bucket would otherwise be below *MIN*.

INSERTING Insert the items of the given sequence into the histogram, until the first overflow occurs. Execute the resulting split-and-merge and move on to the next section (deleting). Each item is denoted as the index of its respective bucket.

Sequence = 3, 1, 3, 5, 2, 3, 4, 1, 5, 3

3 Punkte

DELETING Starting with the resulting histogram of the insert section, remove the items of the given sequence from the histogram, until the first underflow occurs. Execute the resulting merge-and-split. Each item is denoted as the index of its respective bucket.

Sequence =
$$1, 3, 4, 5, 4, 3, 2, 5, 1, 2$$

Assignment 6-2 CUSUM – Change Detection

3 Punkte

Given a mean value $\omega = 3$ and a threshold value $\alpha = 8$, execute the Cumulative Sum algorithm for change detection on the following sequence:

Sequence =	2.	3.	7.	4.	0.	2.	5.	6.	8.	7
Sequence -	4,	υ,	•,	т,	υ,	4,	$\circ,$	υ,	ο,	'

n	\mathbf{x}_n - ω	G_n
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Assignment 6-3Proof by Induction – Lossy Counting Algorithm0 Punkte

For the Frequent Itemset Mining algorithm Lossy Counting, prove the following statement using Induction and the notation from lecture slides:

Whenever an entry (e, f, Δ) gets deleted from the lookup table, the exact frequency $f_e \leq b_{curr}$.

Assignment 6-4 Exponential Histograms

0 Punkte

For the given sequence, construct an Exponential Histogram using a window size N = 8 and an error parameter $\epsilon = 1/2$.

Sequence = $\times, \times, \circ, \times, \circ, \circ, \times, \times, \times, \times, \circ, \times, \times, \circ, \times, \times$

Estimate the number of \times within the window at time t = 13 and compare it to the actual number.