
Big Data Management &
Analytics

EXERCISE 3
16th of November 2015

Sabrina Fr iedl
LMU Munich

1. Revision of Lecture
PARALLEL COMPUTING, MAPREDUCE

Parallel Computing Architectures

• Required to analyse large amounts of data

• Organisation of distributed file systems

 Replicas of files on different nodes

 Master node with directory of file copies

 Examples: Google File System, Hadoop DFS

• Goals

 Fault tolerance

 Parallel execution of tasks

MapReduce - Motivation

MapReduce: Programming model for parallel processing Big Data on clusters

• Stores data that can be processed together close to each other/close to worker

(Data Locality)

• Handles data flow, parallelization and coordination of tasks automatically

• Copes with failures and stragglers

MapReduce – Processing (High Level)

Master
Assign
map tasks

Assign
reduce tasks

MapReduce – Programming Model

Transform set of input key-value pairs into set of output key-value pairs

• Step 1: map(k1, v1) -> list(k2, v2)

• Step 2: sort by k2 -> list(k2, list(v2))

• Step 3: reduce(k2, list(v2)) -> list(k3, v3)

-> Programmer specifies map() and reduce() function

MapReduce – Word Count

Amarena Strawberry

Vanilla Mango

Stracciatella Strawberry

Amarena Stracciatella

Amarena

Amarena

Strawberry

Vanilla

Mango

Stracciatella

Strawberry

Amarena

Stracciatella

Amarena

(Amarena, 1)

(Strawberry, 1)

(Vanilla, 1)

(Mango, 1)

(Stracciatella,1)

(Strawberry, 1)

(Amarena, 1)

(Stracciatella,1)

(Amarena, 1)

(Amarena, 1)

(Amarena, 1)

(Amarena, 1)

(Strawberry, 1)

(Strawberry, 1)

(Vanilla, 1)

(Mango, 1)

(Stracciatella, 1)

(Stracciatella, 1)

(Amarena, 3)

(Strawberry, 2)

(Vanilla, 1)

(Mango, 1)

(Stracciatella, 2)

(Amarena, 3)

(Strawberry, 2)

(Vanilla, 1)

(Mango, 1)

(Stracciatella)

Input Partition Map Shuffle & Sort Reduce Output

MapReduce – Matrix Multiplication

Can be written as

Steps

• 1. Map

• 2. Join

• 3. Map

• 4. ReduceByKey

2. Spark and PySpark
WORKING WITH PYSPARK

Apache Spark™

Open source framework for cluster computing

• Cluster managers that Spark runs on:

Hadoop YARN, Apache Mesos, standalone

• Distributed Storage Systems that can be used:

Hadoop Distributed File System, Cassandra, Hbase, Hive

Homepage: http://spark.apache.org/docs/latest/index.html

http://spark.apache.org/docs/latest/index.html

PySpark - Usage

Spark Python API

• Spark shell: $./bin/spark-shell (‘\‘ for windows)

• PySpark shell: $./bin/pyspark

• Use in Python program:

Programming Guide: http://spark.apache.org/docs/latest/programming-guide.html#overview

Quick Start Guide: http://spark.apache.org/docs/latest/quick-start.html

from pyspark import SparkConf, SparkContext

sc = SparkContext('local')

http://spark.apache.org/docs/latest/programming-guide.html#overview
http://spark.apache.org/docs/latest/quick-start.html

PySpark – Main Concepts

Resilient distributed dataset (RDD)*

• Collection of elements that can be operated on in parallel

• To work with data in Spark, RDDs have to be created

• Examples

Actions and transformations, lazy evaluation principle*

* see next lectures

sc = SparkContext('local')

data = sc.parallelize([1, 2, 3, 4]) #use sc.parallize() to create RDD from a list

lines = sc.textFile("text.txt")

PySpark – Working with MapReduce

MapReduce in PySpark

• rdd.map(f) -> returns RDD (transformation)

• rdd.reduce(f) -> returns RDD (transformation)

• rdd.collect() -> returns content of RDD as list (action)

Examples: see code examples provided on course website

3. Exercises
Will be discussed during next exercise on 23th of November

Exercises
Install Spark on your computer and configure your IDE to work with PySpark (shown for Anaconda

PyCharm on Windows).

1. Implement the word count example in PySpark. Use any text file you like

2. Implement the matrix multiplication example in PySpark.

 Use the prepared code in matrixMultiplication_template.py and implement the missing parts

3. Implement K-Means in in PySpark. (see lecture slides)

 Define or generate some points to do the clustering on and initialize 3 centroids.

 Write two functions assign_to_centroid(point) and calculate_new_centroids(*cluster_points) to use in
your map() and reduce()-calls.

 Apply map() and reduce() iteratively and print out the new centroids as list in each step

