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Geo­Spatial Data
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• Huge flood of geo­spatial data
• Modern technology
• New user mentality

• Great research potential
• New applications
• Innovative research
• Economic Boost

• “$600 billion potential 
annual consumer surplus 
from using personal 
location data” [1]

[1] McKinsey Global Institute. Big data: The next frontier for
innovation, competition, and productivity. June 2011.



Spatio­Temporal Data
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• (object, location, time) triples

• Queries: 
• “Find friends that attended 

the same concert last 
saturday”

• Best case: Continuous function
݁݉݅ݐ → ݁ܿܽ݌ݏ

GPS log taken from a thirty minute drive through Seattle
Dataset provided by: P. Newson and J. Krumm. Hidden Markov Map Matching 
Through Noise and Sparseness. ACMGIS 2009.



Sources of Uncertainty
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• Missing Observations
• Missing GPS signal
• RFID sensors available in discrete locations only
• Wireless sensor nodes sending infrequently to preserve energy
• Infrequent check­ins of users of geo­social networks

Dataset provided by: E. Cho, S. A. Myers and J. Leskovek. Friendship and Mobility: User 
Movement in Location­Based Social Networks. SIGKDD 2011. 



Sources of Uncertainty
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• Uncertain Observations
• Imprecise sensor measurements (e.g. radio triangulation, Wi­Fi positioning)
• Inconsistent information (e.g. contradictive sensor data)
• Human errors (e.g. in crowd­sourcing applications)

 From database perspective, the position of a mobile object is uncertain

Dataset provided by: E. Cho, S. A. Myers and J. Leskovek. Friendship and Mobility: User 
Movement in Location­Based Social Networks. SIGKDD 2011. 



Uncertainty in Spatial Data
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• At time 10:07: Where is an object having past observations at times 10:05am 
and 10:06am?

10:05

10:06



Previous Solution: Extrapolation
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• Unknown positions are estimated using past observations

• No semantic information (road network, driver behaviour etc.)

10:05

10:06

10:07



Previous Solution: Aggregation
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• Exploit semantic knowledge to obtain possible positions of an object

• Aggregate possible positions (expected position, most­likely position)

10:05

10:06
10:07



Geo­Spatial Data
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Research Challenge
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Include the uncertainty directly in the querying and mining process.
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Include the uncertainty directly in the querying and mining process.

Assess the reliability of similarity search and data mining results



Research Challenge
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Include the uncertainty directly in the querying and mining process.

Assess the reliability of similarity search and data mining results

Enhance the underlying decision­making process. 



Overview

1. Introduction to Probability Theory
2. Case Study: Probabilistic Count Queries
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Probability Theory: Random Variables
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A random variable ܺ	is a variable whose value is subject to variations due to chance.

The set of possible outcomes of ܺ is denoted as Ω.



Probability Theory: Random Variables
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A random variable ܺ	is a variable whose value is subject to variations due to chance.

The set of possible outcomes of ܺ is denoted as Ω.

Example 1: Coin toss

Ω ൌ ሼ											, 			 ሽ



Probability Theory: Random Variables
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A random variable ܺ	is a variable whose value is subject to variations due to chance.

The set of possible outcomes of ܺ is denoted as Ω.

Example 1: Coin toss

Ω ൌ ሼ											, 			 ሽ

Example 2: Dice throw

Ω ൌ ሼ1,2,3,4,5,6ሽ	



Probability Theory: Random Events
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Any ߱ ⊆ Ω is called a random event.
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Any ߱ ⊆ Ω is called a random event.

Example 3: Dice throw  Ω ൌ ሼ1,2,3,4,5,6ሽ	
Event A := “An even number is thrown” = ሼ2,4,6ሽ ⊆ Ω



Probability Theory: Random Events
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Any ߱ ⊆ Ω is called a random event.

Example 3: Dice throw  Ω ൌ ሼ1,2,3,4,5,6ሽ	
Event A := “An even number is thrown” = ሼ2,4,6ሽ ⊆ Ω

Example 4: Throw of two dice. Ω ൌ 1,2,3,4,5,6 ଶ ൌ ሼ 1,1 , 1,2 , … , ሺ6,6ሻሽ
Event B := “The sum of points thrown equals 4” =	ሼ 1,3 , 2,2 , ሺ3,1ሻሽ ⊆ Ω



Probability Theory: Random Events
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Any ߱ ⊆ Ω is called a random event.

Example 3: Dice throw  Ω ൌ ሼ1,2,3,4,5,6ሽ	
Event A := “An even number is thrown” = ሼ2,4,6ሽ ⊆ Ω

Example 4: Throw of two dice. Ω ൌ 1,2,3,4,5,6 ଶ ൌ ሼ 1,1 , 1,2 , … , ሺ6,6ሻሽ
Event B := “The sum of points thrown equals 4” =	ሼ 1,3 , 2,2 , ሺ3,1ሻሽ ⊆ Ω

Let ܺ	be a random variable and let ߱	be a random event. Then
ܲሺܺ ൌ ߱ሻ	denotes the probability that random variable ܺ takes a value in ߱.



Probability Theory: Probability Mass Function
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Let Ω be finite or countably infinite.
A function

:݌ Ω → ሾ0,1ሿ
such that

෍ ݌ ݓ ൌ 1
ఠ∈ஐ

is called probability mass function (pmf).
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Let Ω be finite or countably infinite.
A function

:݌ Ω → ሾ0,1ሿ
such that

෍ ݌ ݓ ൌ 1
ఠ∈ஐ

is called probability mass function (pmf).

A pmf ௑݌ is called pmf of a random variable X if for any ߱ ∈ Ω:
ܲ ܺ ൌ ݓ ൌ ሻݓ௑ሺ݌



Probability Theory: Probability Mass Function
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Let Ω be finite or countably infinite.
A function

:݌ Ω → ሾ0,1ሿ
such that

෍ ݌ ݓ ൌ 1
ఠ∈ஐ

is called probability mass function (pmf).

A pmf ௑݌ is called pmf of a random variable X if for any ߱ ∈ Ω:
ܲ ܺ ൌ ݓ ൌ ሻݓ௑ሺ݌

Example 5: Dice throw  Ω ൌ ሼ1,2,3,4,5,6ሽ	

ܲ ܺ ൌ 1 ൌ ௑݌ 1 ൌ
1
6



Uncertain Data
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• In an uncertain database ܤܦ ൌ ሼ݋ଵ, … , ேሽ, each݋ object ݋ ∈ ܤܦ	 is a random
variable. 

Possible World Semantics



Uncertain Data
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• In an uncertain database ܤܦ ൌ ሼ݋ଵ, … , ேሽ, each݋ object ݋ ∈ ܤܦ	 is a random
variable. 

Possible World Semantics

0.4



Possible World Semantics
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Possible World Semantics

0.4The sample space Ω஽஻	is defined by
Ωଵ ൈ ⋯ൈ Ωே

Samples are called Possible Worlds.
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Possible World Semantics

0.4The sample space Ω஽஻	is defined by
Ωଵ ൈ ⋯ൈ Ωே

Samples are called Possible Worlds.
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Possible World Semantics

0.4The sample space Ω஽஻	is defined by
Ωଵ ൈ ⋯ൈ Ωே

Samples are called Possible Worlds.

ୈ୆=



Possible World Semantics
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Possible World Semantics

0.4The sample space Ω஽஻	is defined by
Ωଵ ൈ ⋯ൈ Ωே

Samples are called Possible Worlds.

ୈ୆=

Assumption: ݌஽஻: Ω → ሾ0,1ሿ can be computed efficiently.



Answering Queries using PWS
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Let ߮ be a query predicate and let ܫ ߮, ݓ ∈ Ω஽஻ 	be an indicator
function returning one if predicate ߮	holds in world and	ݓ zero
otherwise.

The probability ܲሺ߮, ሻܦ of the event that a query predicate ߮	holds
on an uncertain database is	ܤܦ defined as

ܲ ߮, ܦ ൌ ෍ ܫ ݓ,߮ ܲሺݓሻ
௪∈ஐವಳ

Possible World Semantics
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Possible Worlds: Example II
A B

G

D E FC

H I J K
L

M

N O
P

Q

R

U

T
S

V W X Y Z



36



37



38



39



40



41



42

Too many possible worlds
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Too many possible worlds

Main challenge:
- Answer queries efficiently.
- Despite an exponential number of possible worlds



Overview

1. Introduction to Probability Theory
2. Case Study: Probabilistic Count Queries

44
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Count Queries on Uncertain Data

qHow many objects are
located in the depicted
circular region centered at 
query point q?

Querying Uncertain Spatial Data
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q

0.8 0.2

0.4

H

C A

B

H3

Count Queries on Uncertain Data

Querying Uncertain Spatial Data

 2|஽஻| possible worlds

 Main	idea:	Use polyomial
multiplication to enumerate
possible results
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Example:

࣠ ൌ
ܲ ܣ ⋅ ݔ ൅ 1 െ ܲሺܣሻ ⋅
ܲ ܤ ⋅ ݔ ൅ 1 െ ܲሺܤሻ ⋅
ܲ ܥ ⋅ ݔ ൅ 1 െ ܲሺܥሻ

q

0.8 0.2

0.4

H

C A

B

H3

Count Queries on Uncertain Data

Querying Uncertain Spatial Data
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q

0.8 0.2

0.4

H

C A

B

H3

Example:

࣠ ൌ
ܲ ܣ ⋅ ݔ ൅ 1 െ ܲሺܣሻ ⋅
ܲ ܤ ⋅ ݔ ൅ 1 െ ܲሺܤሻ ⋅
ܲ ܥ ⋅ ݔ ൅ 1 െ ܲሺܥሻ ൌ

ሺ0.2x൅0.8ሻ ⋅ ሺ0.4x൅0.6ሻ ⋅ 0.8x ൅ 0.2 ൌ

ଶݔ0.08 ൅ ݔ0.12 ൅ ݔ0.32 ൅ 0.48 ⋅ ሺ0.8ݔ ൅ 0.2ሻ

Count Queries on Uncertain Data

Querying Uncertain Spatial Data
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q

0.8 0.2

0.4

H

C A

B

H3

Example:

࣠ ൌ
ܲ ܣ ⋅ ݔ ൅ 1 െ ܲሺܣሻ ⋅
ܲ ܤ ⋅ ݔ ൅ 1 െ ܲሺܤሻ ⋅
ܲ ܥ ⋅ ݔ ൅ 1 െ ܲሺܥሻ ൌ

ሺ0.2x൅0.8ሻ ⋅ ሺ0.4x൅0.6ሻ ⋅ 0.8x ൅ 0.2 ൌ

ଶݔ0.08 ൅ ݔ0.12 ൅ ݔ0.32 ൅ 0.48 ⋅ ሺ0.8ݔ ൅ 0.2ሻ ൌ

ଶݔ0.08 ൅ ݔ0.44 ൅ 0.48 ⋅ ݔ0.8 ൅ 0.2

Count Queries on Uncertain Data

Querying Uncertain Spatial Data
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q

0.8 0.2

0.4

H

C A

B

H3

Example:

࣠ ൌ
ܲ ܣ ⋅ ݔ ൅ 1 െ ܲሺܣሻ ⋅
ܲ ܤ ⋅ ݔ ൅ 1 െ ܲሺܤሻ ⋅
ܲ ܥ ⋅ ݔ ൅ 1 െ ܲሺܥሻ ൌ

ሺ0.2x൅0.8ሻ ⋅ ሺ0.4x൅0.6ሻ ⋅ 0.8x ൅ 0.2 ൌ

ଶݔ0.08 ൅ ݔ0.12 ൅ ݔ0.32 ൅ 0.48 ⋅ ሺ0.8ݔ ൅ 0.2ሻ ൌ

ଶݔ0.08 ൅ ݔ0.44 ൅ 0.48 ⋅ ݔ0.8 ൅ 0.2 ൌ

ሺ0.032ݔଷ ൅ ଶݔ0.224 ൅ ଵݔ0.456 ൅ ଴ሻݔ0.288

Count Queries on Uncertain Data

Querying Uncertain Spatial Data
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H
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Example:

࣠ ൌ
ܲ ܣ ⋅ ݔ ൅ 1 െ ܲሺܣሻ ⋅
ܲ ܤ ⋅ ݔ ൅ 1 െ ܲሺܤሻ ⋅
ܲ ܥ ⋅ ݔ ൅ 1 െ ܲሺܥሻ ൌ

ሺ0.2x൅0.8ሻ ⋅ ሺ0.4x൅0.6ሻ ⋅ 0.8x ൅ 0.2 ൌ

ଶݔ0.08 ൅ ݔ0.12 ൅ ݔ0.32 ൅ 0.48 ⋅ ሺ0.8ݔ ൅ 0.2ሻ ൌ

ଶݔ0.08 ൅ ݔ0.44 ൅ 0.48 ⋅ ݔ0.8 ൅ 0.2 ൌ

ሺ0.032ݔଷ ൅ ଶݔ0.224 ൅ ଵݔ0.456 ൅ ଴ሻݔ0.288

Probability that exactly two objects are
inside the query region

Count Queries on Uncertain Data

Querying Uncertain Spatial Data
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Example:

࣠ ൌ
ܲ ܣ ⋅ ݔ ൅ 1 െ ܲሺܣሻ ⋅
ܲ ܤ ⋅ ݔ ൅ 1 െ ܲሺܤሻ ⋅
ܲ ܥ ⋅ ݔ ൅ 1 െ ܲሺܥሻ ൌ

ሺ0.2x൅0.8ሻ ⋅ ሺ0.4x൅0.6ሻ ⋅ 0.8x ൅ 0.2 ൌ

ଶݔ0.08 ൅ ݔ0.12 ൅ ݔ0.32 ൅ 0.48 ⋅ ሺ0.8ݔ ൅ 0.2ሻ ൌ

ଶݔ0.08 ൅ ݔ0.44 ൅ 0.48 ⋅ ݔ0.8 ൅ 0.2 ൌ

ሺ0.032ݔଷ ൅ ଶݔ0.224 ൅ ଵݔ0.456 ൅ ଴ሻݔ0.288

Count Queries on Uncertain Data

Querying Uncertain Spatial Data

Polynomial time solution: Unify worlds that are
equvalent with respect to the query predicate!



The Paradigm of Equivalent Worlds[ICDE’14(tutorial)]
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