
Chapter 8:
Graph Data

Part 1:
Link Analysis & Page Rank

Based on
Leskovec, Rajaraman, Ullman 2014:

Mining of Massive Datasets
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●Exam on the 5th of February, 2016, 14.00 to 16.00

●If you wish to attend, please register!

http://uniworx.ifi.lmu.de/
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Graph Data: Social Networks
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[Source: 4-degrees of separation, Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Graph Data: Media Networks
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Graph Data: Information Networks
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Citation Networks and Map of Science
[Börner et al., 2012]
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Graph Data: Technological Networks

Big Data Management and Analytics

Road Network of Toulouse
[Mathieu Leplatre]
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Graph Data: Communication Networks
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The Internet

domain2

domain1

domain3

router
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Web as a Graph
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Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks
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Web as a directed graph:
- Nodes: Webpages
- Edges: Hyperlinks
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How to organise the web?
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How to organise the web?

First try:
Human Curated Web Directories

Yahoo, DMOZ, LookSmart
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General Question
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How to organise the web?

First try:
Human Curated Web Directories

Second try:
Web Search

But: Web is huge,
full of untrusted documents,
random things, web spam, etc.
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Web Search: Challenges
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1) Web contains many sources of information.
     Who to trust?→

    Idea: Trustworthy pages may point to each other

2) What is the “best” answer to a certain query?
     How to rank results?→

    No single right answer.
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Web Search
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Early Search Engines:
Crawl the web, list terms, create inverted index

http://www.example.org|

Headline
This text contains words.
Words are important. Many 
words appear in this text.
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Web Search
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Early Search Engines:
Crawl the web, list terms, create inverted index

http://www.example.org|

Headline
This text contains words.
Words are important. Many 
words appear in this text.

appear
are

contains
headline

important
in

many
text
this

words

example.org (1)
example.org (1)
example.org (1)
example.org (1)
example.org (1)
example.org (1)
example.org (1)
example.org (2)
example.org (2)
example.org (3)

Problem:
Term Spam
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Not all web pages are equally “important”

www.nytimes.com            vs.          www.thetimesonline.com
(The New York Times)                    (The Times of Northwest
                                                         Indiana, Munster, IN)
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Not all web pages are equally “important”

www.nytimes.com            vs.          www.thetimesonline.com
(The New York Times)                    (The Times of Northwest
                                                         Indiana, Munster, IN)

in-links: ~13.600.000                       in-links: 5.960

 → There is a large diversity in the web-graph node 
connectivity.
IDEA: rank pages by their link structure!
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Page Rank: “Flow” Formulation
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Idea: links as votes
Page is more important if it has more links

In-links? Out-links?
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Page Rank: “Flow” Formulation
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Idea: links as votes
Page is more important if it has more in-links

Think of in-links as votes.

Are all in-links equal?
Links from important pages count more
=> Recursive Definition!
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Page Rank: “Flow” Formulation
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Example

B
38.4

C
34.3

E
8.1

F
3.9

D
3.9

A
3.3

1.6
1.6 1.6 1.6 1.6
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●Each link's vote is proportional to the importance
of its source page

●If page j with importance rj has n out-links,

each link gets rj / n votes

●Page j's own importance is the sum of the votes
on its in-links

rj = ri/3 + rk/4
j

kkii

rj/3

rj/3rj/3

ri/3 rk/4
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●A “vote” from an important page
is worth more

●A page is more important if it is
pointed to by other important pages

Define a “rank” r
j
 for page j

(with d
i
 = out-degree of node i)





ji

i
j

r
r

id

yy

mmaa
a/2

y/2
a/2

m

y/2

“Flow” equations:
ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2
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●3 equations, 3 unknowns, no constants
● No unique solution
● All solutions equivalent modulo the scale factor

●Additional constraint forces uniqueness:
● ry + ra + rm = 1
● Solution via Gaussian elimination ry = 2/5, ra = 2/5, rm = 1/5

●Gaussian elimination method works for small examples,
but we need a better method for large web-sized graphs

●We need a new formulation!
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●Stochastic adjacency matrix M
● Let page i has di out-links
● If i  j, then M→ ji = 1/di, else Mji = 0
● M is a column stochastic matrix: columns sum to 1

●Rank vector r: vector with an entry per page
● ri is the importance score of page i
● Σi ri = 1

●The flow equations can be written

r  =  M ∙ r
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●Remember the flow equation:

●Flow equation in matrix form:   M ∙ r = r

● Suppose page i links to 3 pages, including j:

j

i

M r r

=
rj

1/3

ri
.

. =





ji

i
j

r
r

id
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●The flow equations can be written as
r  =  M ∙ r

●So the rank vector r is an eigenvector of the
stochastic web matrix M
● In fact, its first or principal eigenvector

with corresponding eigenvalue 1
● Largest eigenvalue of M is 1 since M is

column stochastic (with non-negative entries)
● We know r is unit length and each column

of M sums to 1, so  M ∙ r ≤ 1

●We can now efficiently solve for r!
Power Iteration

Note:
x is an eigenvector
with corresponding

eigenvalue λ if:

Ax = λx
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●Power Iteration is an eigenvalue algorithm
● Also known as Von Mises iteration
● Given a matrix A, P.I. returns a value λ and a nonzero 

vector v, such that  Av = λv

●Will find only the dominant eigenvector (the vector 
corresponding to the largest eigenvalue)

r(1) = M ∙ r(0)

r(2) = M ∙ r(1) = M ( M ∙ r(0) ) = M2 ∙ r(0)

r(3) = M ∙ r(2) = M ( M2 ∙ r(0) ) = M3 ∙ r(0)
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●Given a web graph with n nodes, where the nodes are 
pages and the edges are hyperlinks

●Power iteration: a simple iterative scheme
● Suppose there are N web pages

● Initialize: r(0) = [1/N, …, 1/N]T

● Iterate: r(t+1) = M ∙ r(t)

● Stop when: | r(t+1) – r(t) |1 < ɛ







ji

t
it

j

r
r

i

)(
)1(

d
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●Power Iteration:
● Set  rj = 1/N
● 1:  r'j = ∑i  j→  ri / di

● 2: r = r'
● Goto 1

yy

aa mm

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2
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●Power Iteration:
● Set  rj = 1/N
● 1:  r'j = ∑i  j→  ri / di

● 2: r = r'
● Goto 1

●Example:

yy

aa mm

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2 + rm

rm = ra /2

r
y

1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15
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●Imagine a random web surfer:
● At any time t, surfer is on some page i
● At time t + 1, the surfer follows an

out-link from i uniformly at random
● Ends up on page j linked from i
● Process repeats indefinitely

●Let:
● p(t) … vector whose ith  coordinate is the

probability that surfer is at page i at time t
● So, p(t) is a probability distribution over pages

j

i1 i2 i3





ji

i
j

r
r

(i)dout
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●Where is surfer at time t + 1?
● Follows a link uniformly at random

p (t + 1)  =  M ∙ p (t)

●Suppose the random walk reaches a state
  p (t +  1)  =  M ∙ p (t)  =  p (t)
then p (t) is stationary distribution
of a random walk

●Our original rank vector r satisfies  r  =  M ∙ r
● So, r is a stationary distribution

for a random walk

j

i1 i2 i3





ji

i
j

r
r

(i)dout
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A central result from the theory of random walks
(a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and eventually 
will be reached no matter what the initial probability 

distribution at time t = 0.
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●Does this converge?

●Does it converge to what we want?

●Are results reasonable?







ji

t
it

j

r
r

i

)(
)1(

d
Mrr 
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●Example:

bbaa 





ji

t
it

j

r
r

i

)(
)1(

d

r
a

1 0 1 0 1 0 1 0 …

r
b

0 1 0 1 0 1 0 1
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Does it converge to what we want?

Big Data Management and Analytics

●Example:

r
a

1 0 0 0 0 0 0 …

r
b

0 1 0 0 0 0 0

bbaa 





ji

t
it

j

r
r

i

)(
)1(

d
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2 Problems:

●Some pages are dead ends
(have no out-links)
● Random walk has “nowhere to go” to
● Such pages cause “leak” of importance

●Spider traps
(all out-links are within a group)
● Random walk gets “stuck” in a trap
● Eventually spider trap absorbs all importance

Dead end

Spider trap
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The Google Solution
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The Google solution for spider traps: Teleports

At each time step, the random surfer has two options:
● With probability ß, follow a link at random
● With probability 1 – ß, jump to some random page
● Common values for ß range between 0.8 and 0.9

Surfer will teleport out of spider trap within a few time steps

yy

aa mm

yy

aa mm
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Dead ends cause the page
importance to leak out,
because the adjacency
matrix is non-stochastic.

yy

aa mm

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2

rm = ra /2
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Dead ends cause the page
importance to leak out,
because the adjacency
matrix is non-stochastic.

Solution: Always teleport!
Adjust matrix accordingly:

yy

aa mm

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry  = ry /2 + ra /2

ra  = ry /2

rm = ra /2

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

yy

aa mm
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The final version of the Google PageRank: [Brin-Page 98]

(This formulation assumes M has no dead ends.
M can either be preprocessed to remove all dead ends
or with explicit teleports to random links from dead ends.)
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The Google Matrix
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Google matrix A combines
the adjacency matrix M
with the random teleports
by a factor ß.

(With ß = 0.8 for this example)

     1/2 1/2   0
     1/2   0    0
      0   1/2   1

   1/3 1/3 1/3
   1/3 1/3 1/3
   1/3 1/3 1/3

 ß + 1 – ß

M [1/N]NxN

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

A
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The Google Matrix
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     1/2 1/2   0
     1/2   0    0
      0   1/2   1

   1/3 1/3 1/3
   1/3 1/3 1/3
   1/3 1/3 1/3

0.8 + 0.2

M [1/N]NxN

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

A

yy

aa mm

7/
15

7/15

1/15

13/15

1/151/15

1/15

7/15
7/

15

y 1/3 0.33 0.24 0.26 7/33

a = 1/3 0.20 0.20 0.18 … 5/33

m 1/3 0.46 0.52 0.56 21/33
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●Measures generic popularity of a page
● Biased against topic-specific authorities
● Solution: Topic-specific PageRank

●Uses only one measure of importance
● Other models exist
● Solution: e.g., Hubs and Authorities

●Susceptible to Link Spam
● Evolved from term spam (see: older search engines)
● Artificial link topographies created  to boost page rank
● Solution: TrustRank
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●Instead of generic popularity, can we
measure popularity within a certain topic?

●Goal: evaluate web pages not only according
to their popularity, but by how close they are
to a particular topic, e.g., “sports” or “history”

●Allows search queries to be answered based
on user interest

● Example: Query “Trojan” may yield different
results depending on whether user is interested
in sports, history, computer security, … 
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Topic-specific PageRank
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●Modification in random walk behaviour (teleports)

●Teleport has probability to go to:
● Standard PageRank: Any page with equal probability

To avoid dead ends and spider-traps
● Topic-specific PageRank: A topic specific set of “relevant” 

pages (teleport set)

●Idea: Bias the random walk
● When walker teleport, they pick a page from set S
● S contains only pages that are relevant to the topic,

e.g., from Open Directory (DMOZ) pages for given topic
● For each teleport set S, we get a different vector rS
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1

2 3

4

Suppose S = {1}, ß = 0.8
Node Iteration

0 1 2     … stable
1 0.25 0.4 0.28 0.294
2 0.25 0.1 0.16 0.118
3 0.25 0.3 0.32 0.327
4 0.25 0.2 0.24 0.261

0.2

0.5
0.5

1

1 1

0.4 0.4

0.8

0.8 0.8

S={1,2,3,4},  β=0.8:
r=[0.13, 0.10, 0.39, 0.36]
S={1,2,3} ,  β=0.8:
r=[0.17, 0.13, 0.38, 0.30]
S={1,2} ,  β=0.8:
r=[0.26, 0.20, 0.29, 0.23]
S={1} ,  β=0.8:
r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.90:
r=[0.17, 0.07, 0.40, 0.36]
S={1} ,  β=0.8:
r=[0.29, 0.11, 0.32, 0.26]
S={1},  β=0.70:
r=[0.39, 0.14, 0.27, 0.19]
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Topic vector S
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●Create different PageRanks for different topics
● The 16 DMOZ top-level categories

art, business, sports, …

●Which topic ranking to use?
● User can pick from a menu
● Classify query into a topic
● Use context of query:

e.g., query is launched from website about
certain topic, or history of queries

● User context, e.g., bookmarks, ...
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●“Normal” PageRank
● Teleports uniformly at random to any node
● All nodes have the same landing probability

S = [ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 ]

●Topic-specific PageRank,
also known as Personalized PageRank
● Teleports to a topic specific set of pages
● Nodes can have different landing probabilities

S = [ 0.1, 0.0, 0.2, 0.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0 ]

●Random walk with restarts
● Topic-specific with teleports to always the same node

S = [ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]



50

DATABASE
SYSTEMS

GROUP

Link Spam

Big Data Management and Analytics

●Spamming:
Any deliberate action with the intent to boost
a web page's position in search engine results
incommensurate with page's actual relevance

●Spam:
Query results that are the result of spamming

 very broad definition→

●Approximately 10% – 15% of web pages are spam
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Link Spam
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●Early spamming techniques flooded web pages with 
unfitting words to exploit search engines
● Example: Web page for T-Shirts includes the word 

“movie” over and over again
● “Term spam”

●As Google became more dominant, spam farms tried
to target PageRank to a single page by placing many
contextual links on other pages
● “Link Spam” or “Google Bomb”
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2003 George W. Bush Google Bomb

Big Data Management and Analytics
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Link Farms
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InaccessibleInaccessible

t

Accessible Owned

1

2

M

Millions of 
farm pages

For a target page t, a spammer
creates many in-links from
publicly accessible web pages
like forums, blogs, etc.,
as well as many farm pages
on own infrastructure to create
a closely connected clique.
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Combating Spam
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●Combating Term Spam:
● Analyze text using statistical methods
● Similar to email spam filtering
● Detecting duplicate pages

●Combating Link Spam:
● Detection and blacklisting of structures

that look like spam farms
● Leads to another war: hiding and detecting

● TrustRank = topic-specific PageRank with
teleport to a set of trusted pages,
e.g., .edu domains or similar
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TrustRank
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●Alternative model for TrustRank: Trust Propagation

Initial seed set of trusted pages (evaluated by hand)

●Set trust tp of each trusted page p to 1
● For each out-link from p, a portion of the trust

is passed on to target page q

●Trust is additive
● Trust of q is sum of all trust conferred by its in-links

●If trust is below a threshold, page is flagged as spam
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●Exam on the 5th of February, 2016, 14.00 to 16.00

●If you wish to attend, please register!

http://uniworx.ifi.lmu.de/
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