Chapter 8:
 Graph Data

Part 2:
 Community Detection

Based on
Leskovec, Rajaraman, Ullman 2014:
Mining of Massive Datasets

Analysis of Large Graphs

Outline

Community Detection

- Social networks
- Betweenness
- Girvan-Newman Algorithm
- Modularity
- Graph Partitioning
- Spectral Graph Partitioning
- Trawling

Analysis of Large Graphs

Networks \& Communities:
Think of networks being organized into:

- Modules
- Cluster
- Communities

\rightarrow Goal: Find densely linked clusters

Analysis of Large Graphs

What is a Social Network?

Characteristics of a social network:

- Collection of entities participating in the network (entities might be individuals, phone numbers, email addresses , ...)
- At least one relationship between entities of the network. (Facebook: 'friend'). Relationship can be all-or-nothing or specified by a degree (e.g. fraction of the average day that two people communication to each other)
- Assumption of nonrandomness or locality, i.e. relationships tend to cluster. (e.g. A is related to B and $C \rightarrow$ higher probability that B is related to C)

Analysis of Large Graphs

How to find communities?

\rightarrow Here we will work with undirected (unweighted networks)
\rightarrow We need to resolve 2 questions:
\rightarrow How to compute betweenness?
\rightarrow How to select the number of clusters?

Analysis of Large Graphs

Outline

Community Detection

- Social networks
- Betweenness
- Girvan-Newman Algorithm
- Modularity
- Graph Partitioning
- Spectral Graph Partitioning
- Trawling

Analysis of Large Graphs

Betweenness

Definition: The betweenness of an edge (a, b) is the number of pairs of nodes x and y such that (a, b) lies on the shortest-path between x and y.

Example:

Edge (B,D) has highest betweenness (shortest path of A,B,C to any of D,E,F,G) \rightarrow Betweenness of (B,D) aggregates to: $3 \times 4=12$

Betweenness of edge (D,F) ?

Analysis of Large Graphs

Girvan-Newman Algorithm

Goal: Computation of betweenness of edges

Step 1: Perform a breadth-first search, starting at node X and construct a DAG (directed, acyclic graph)

Example:

- Start at node E

Level 1

Level 2

Level 3

Analysis of Large Graphs

Girvan-Newman Algorithm

Goal: Computation of betweenness of edges

Step 2: label each node by the number of shortest paths that reach it from the root. Label of root $=1$, each node is labeled by the sum of its parents.

Example:

Level 1

Level 2

Level 3

Analysis of Large Graphs

Girvan-Newman Algorithm

Goal: Computation of betweenness of edges

Step 3: calculate for each edge e the sum over all nodes Y the fraction of shortest paths from the root X to Y :

In Detail:

1. Each leaf gets a credit of 1 .
2. Non-leaf nodes gets a credit of 1 plus the sum of its children
3. A DAG edge e entering node Z from the level above is given a share of the credit of Z proportional to the fraction of shortest paths from the root to Z. Formally: let Y_{1}, \ldots, Y_{k} be the parent nodes of Z with $p_{i}, 1 \leq i \leq k$, be the number of shortest path to Y_{i}. The credit for edge $\left(Y_{i}, Z\right)$ is given by: $Z * p_{i} / \sum_{j=1}^{k} p_{j}$

Level 1

Level 2

Level 3

Analysis of Large Graphs

Find Communities using Betweenness

Idea: Clustering is performed by taking the edges in order of increasing betweenness and add them to the graph or as a process of edge removal

Example:

GN-Algorithm has been performed for every node and the credit of each edge has been calculated (by summing the credits up and dividing them by 2. Why?)

Remove edges, starting by highest betweenness:

- 1. Remove (B,D)
\rightarrow Communities $\{A, B, C\}$ and $\{D, E, F, G\}$
- 2. Remove (A,B), (B,C), (D,G), (D,E), (D,F) \rightarrow Communities $\{\mathrm{A}, \mathrm{C}\}$ and $\{\mathrm{E}, \mathrm{F}, \mathrm{G}\}$ Node B and D are encapsulated as ,traitors' of communities

Analysis of Large Graphs

Find Communities using Betweenness

Girvan-Newman Algorithm:

- connected components are communities
- gives a hierarchical decomposition of the network

Analysis of Large Graphs

Outline

Community Detection

- Social networks
- Betweenness
- Girvan-Newman Algorithm
- Modularity
- Graph Partitioning
- Spectral Graph Partitioning
- Trawling

Analysis of Large Graphs

Network Communities

\checkmark How to compute betweenness?
\rightarrow How to select the number of clusters?

Communities: sets of tightly connected nodes

Modularity Q:

- A measure of how well a network is partitioned into communities
- Given a partitioning of the network into groups $s \in S$:
$Q \propto \sum_{s \in S}[(\#$ edges within group $s)-(\underbrace{\text { expected \#edges within group } s}_{\text {Defined by null model }})]$

Analysis of Large Graphs

Null Model: Configuration Model

- Given a graph G with \boldsymbol{n} nodes and \boldsymbol{m} edges, construct rewired network G^{\prime} :
- Same degree distribution but random connections
- Consider G^{\prime} as a multigraph
\rightarrow The expected number of edges between nodes \boldsymbol{i} and \boldsymbol{j} of degrees k_{i} and k_{j} is given by: $\frac{\mathbf{1}}{2 m} * \boldsymbol{k}_{\boldsymbol{i}} \boldsymbol{k}_{\boldsymbol{j}}$

Proof that G^{\prime} contains the expected number of m edges:

$$
\frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_{i} k_{j}}{2 m}=\frac{1}{2} \frac{1}{2 m} \sum_{i \in N} k_{i}\left(\sum_{j \in N} k_{j}\right)=\frac{1}{4 m} * 2 m * 2 m=m
$$

Analysis of Large Graphs

Modularity

Modularity of partitioning S of graph G:

$Q \propto \sum_{s \in S}[(\# e d g e s$ within group $s)-($ expected \#edges within group $s)]$

$$
Q(G, S)=\underbrace{\frac{1}{2 m}} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s}\left(a_{i j}-\frac{k_{i} k_{j}}{2 m}\right)
$$

Normalizing: $-\mathbf{1}<\boldsymbol{Q}<\mathbf{1}$
Modularity values take range $[-1,1]$:

- Positive if the number of edges within groups exceeds the expected number
- $0.3-0.7<\boldsymbol{Q}$ means significant community structure

Analysis of Large Graphs

Modularity

$\rightarrow \mathrm{Q}$ is useful for selecting the number of clusters

Analysis of Large Graphs

Outline

Community Detection

- Social networks
- Betweenness
- Girvan-Newman Algorithm
- Modularity
- Graph Partitioning
- Spectral Graph Partitioning
- Trawling

Partitioning of Graphs

Given an undirected Graph $G(V, E)$:

Bi-partitioning task:

- Divide vertices into two disjoint groups A, B

Questions:

- How can we define 'good' partition of G ?
- How can we efficiently identify such a partition?

Analysis of Large Graphs

Partitioning of Graphs

What makes a good partition?

- Maximize the number of within-group connections
- Minimize the number of between-group connections

Example:

Analysis of Large Graphs

Partitioning of Graphs

Graph Cuts

Express partitioning objectives as a function of the 'edge cut' of the partition

Cut: Set of edges with only one vertex in a group:

$$
\operatorname{cut}(A, B)=\sum_{i \in A, j \in B} w_{i j}
$$

Example:

Analysis of Large Graphs

Partitioning of Graphs

Minimum-cut

Minimize weight of connections between groups:

$$
\arg \min _{A, B} \operatorname{cut}(A, B)
$$

Example:

Problem:

- Only considers external cluster connections
- Does not consider internal cluster connectivity

Analysis of Large Graphs

Partitioning of Graphs - Graph Cuts

Normalized-cut: Connectivity between groups relative to the density of each group

$$
\operatorname{vcut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{vol}(A)}+\frac{\operatorname{cut}(A, B)}{\operatorname{vol}(B)}
$$

$\boldsymbol{\operatorname { v o l }}(\boldsymbol{X})$: total weight of edges with at least one endpoint

$$
\text { in X: } \operatorname{vol}(X)=\sum_{i \in A} k_{i}
$$

\rightarrow Produces more balanced partitions
How to find a good partition efficiently?
Problem: Computing optimal cut is NP-hard!

Spectral Graph Partitioning

- Adjacency matrix of an undirected Graph G $a_{i j}=1$ if (i, j) exist in G, else 0
- Vector $x \in R^{n}$ with components (x_{1}, \ldots, x_{n})

Think of it as a label/value of each node of G
What is the meaning of $\boldsymbol{A} * \boldsymbol{x}$?

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) *\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad y_{i}=\sum_{j=1}^{n} a_{i j} * x_{j}=\sum_{(i, j) \in E} x_{j}
$$

\rightarrow Entry y_{i} is a sum of labels / values x_{j} of neighbors of i

Analysis of Large Graphs

Spectral Graph Partitioning

What is the meaning of $A * \boldsymbol{x}$?

$$
\begin{gathered}
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) *\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \\
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right) *\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \\
\boldsymbol{A} * \boldsymbol{x}=\boldsymbol{\lambda} * \boldsymbol{x} \text { Eigenvalue Problem }
\end{gathered}
$$

Spectral Graph Theory:

- Analyze the ,spectrum' of matrix representing G
- Spectrum: Eigenvectors x_{i} of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_{i}
- $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ with $\lambda_{1} \leq \cdots \leq \lambda_{n}$

Spectral Graph Partitioning

Intuition

Suppose all nodes in G have degree d and G is connected
What are some eigenvalues/vectors of G ?
Eigenvalue Problem: $A * x=\lambda * x \rightarrow$ find λ and x

- Let's try $x=(1, \ldots, 1)$
- Then $A * x=(d, \ldots, d)=\lambda * x \rightarrow \lambda=d$

$$
\begin{aligned}
& \text { Remember: } \\
& \qquad y_{i}=\sum_{j=1}^{n} a_{i j} * x_{j}=\sum_{(i, j) \in E} x_{j}
\end{aligned}
$$

Analysis of Large Graphs

Spectral Graph Partitioning

Intuition
 What if G is not connected?

- G has 2 components, each d-regular

What are some eigenvectors?

- $\quad x=$ put all 1 s on A and 0 s on B or vice versa
- $x^{\prime}=(1, \ldots, 1,0, \ldots, 0)$, then $A * x^{\prime}=(d, \ldots, d, 0, \ldots, 0)$
- $x^{\prime \prime}=(0, \ldots, 0,1, \ldots, 1)$, then $A * x^{\prime \prime}=(0, \ldots, 0, d, \ldots, d)$
- $\quad \rightarrow$ in both cases the corresponding $\lambda=d$

$2^{\text {nd }}$ largest eigval. λ_{n-1} now has value very close to λ_{n}

Analysis of Large Graphs

Spectral Graph Partitioning

Intuition

$2^{\text {nd }}$ largest eigval. λ_{n-1} now has value very close to λ_{n}

- If the graph is connected (right example) then we already know that $x_{n}=(1, \ldots, 1)$ is an eigenvector
- Since eigenvectors are orthogonal then the components of x_{n-1} sum to 0
- Why? \rightarrow Because $\sum_{i} x_{n}[i] * \sum_{i} x_{n-1}[i]=0$
- General Idea: we can look at the eigenvector of the 2nd largest eigenvalue and declare nodes with positive label in A and negative label in B

Analysis of Large Graphs

LMU

Spectral Graph Partitioning

- Adjacency matrix A:
- $\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}$ matrix
- $A=\left[a_{i j}\right], a_{i j}=1$ if there is an edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

Spectral Graph Partitioning

- Degree matrix D:
- $\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}$ diagonal matrix
- $D=\left[d_{i i}\right], d_{i i}=$ degree of node i

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Spectral Graph Partitioning

- Laplacian Matrix L:
- $\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}$ symmetric matrix
- $L=D-A$

- Trivial eigenpair?

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- $X=(1, \ldots, 1)$, then $L * x=0$ and so $\lambda_{1}=0$

Spectral Clustering Algorithms

Three basic stages:

1. Pre-processing

- Construct a matrix representation of the graph

2. Decomposition

- Compute eigenvalues and eigenvectors of the matrix
- Map each point point to a lower-dimensional representation on one or more eigenvectors

3. Grouping

- Assign points to two or more clusters, based on the new representation

Spectral Clustering Algorithms

1. Pre-processing:

- Build Laplacian matrix L of the graph

2. Decomposition:

- Find eigenvalues λ and eigenvectors x of the matrix L

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

$\lambda=$	0.0
	1.0
	3.0
	3.0
	4.0
	5.0
1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

$\mathbf{X}=$| 0.4 | 0.3 | -0.5 | -0.2 | -0.4 | -0.5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.6 | 0.4 | -0.4 | 0.4 | 0.0 |
| 0.4 | 0.3 | 0.1 | 0.6 | -0.4 | 0.5 |
| 0.4 | -0.3 | 0.1 | 0.6 | 0.4 | -0.5 |
| 0.4 | -0.3 | -0.5 | -0.2 | 0.4 | 0.5 |
| 0.4 | -0.6 | 0.4 | -0.4 | -0.4 | 0.0 |

- Map vertices to lower-dimensional representation

Spectral Clustering Algorithms

3. Grouping:

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two (threshold ε)
- By choosing m vectors, there are max. 2^{m} clusters
\rightarrow How to choose a splitting point, i.e threshold ε ?
- Naive approaches:
- Split at $\varepsilon=0$ or median value
- More expensive approaches:
- Attempt to minimize normalized cut in 1-dimension
- (sweep over ordering of nodes induces by the eigenvector)
\(\left.$$
\begin{array}{|c|c|}\hline 1 & 0.3 \\
\hline 2 & 0.6 \\
\hline 3 & 0.3 \\
\hline 4 & -0.3 \\
\hline 5 & -0.3 \\
\hline 6 & -0.6 \\
\hline\end{array}
$$ \square $$
\begin{array}{c}\begin{array}{|c|c|}\hline\end{array} \quad \begin{array}{c}\text { Split at } \varepsilon=0: \\
\text { Cluster A: Positive points } \\
\text { Cluster B: Negative points }\end{array}
$$

\hline 1\end{array}\right) 0.3\)| 4 | -0.3 |
| :---: | :---: |
| 2 | 0.6 |
| 3 | 0.3 |
| 5 | -0.3 |
| 6 | -0.6 |

Big Data Management and Analytics

Analysis of Large Graphs

LMU

Spectral Clustering Algorithms

Big Data Management and Analytics

Analysis of Large Graphs

Spectral Clustering Algorithms

Components of $\mathbf{x}_{\mathbf{2}}$

Big Data Management and Analytics

Analysis of Large Graphs

Spectral Clustering Algorithms

Big Data Management and Analytics

Analysis of Large Graphs

Outline

Community Detection

- Social networks
- Betweenness
- Girvan-Newman Algorithm
- Modularity
- Graph Partitioning
- Spectral Graph Partitioning
- Trawling

Analysis of Large Graphs - Trawling

Trawling

- Goal: find small communities in huge graphs
- E.g. how to describe community/discussion in a Web

Example:

E.g. people talking about the same things or visited web pages

Analysis of Large Graphs - Trawling

Problem definition:

Enumerate complete bipartite subgraphs $\mathrm{K}_{s, t}$:

- All vertices in $\mathrm{K}_{s, t}$ can be partitioned in two sets. Each vertex in the first set of size \boldsymbol{s} is linked to each vertex in second set of size t
- Where $K_{s, t}: s$ nodes on the "left" where each links to the same t other nodes on the "right"

$$
\begin{aligned}
& |X|=s=3 \\
& |Y|=t=4
\end{aligned}
$$

Frequent Itemset Analysis - Market Basket Analysis

- Market: Universe U of \boldsymbol{n} items
- Baskets: subsets of $U: S_{1}, S_{2}, \ldots, S_{m} \subseteq U$
- $\quad\left(S_{i}\right.$ is a set of items one person bought)
- Support: frequency threshold
- Goal: Find all subsets T s.t. $T \subseteq S_{i}$ of at least f sets S_{i}
- (items in T were bought together at least f times)

Frequent itemsets = complete bipartite graphs

$K_{s, t}=$ a set \boldsymbol{Y} of size t
 that occurs in s sets S_{i}
E.g. Bipartite subgraph $\mathrm{K}_{3,4}$ a frequent itemset $Y=\{a, b, c\}$ of supp \boldsymbol{s}. So, there are \boldsymbol{s} nodes that link to all of $\{a, b, c\}$:

We found $\kappa_{s, t}$!
$\boldsymbol{K}_{s, t}=$ a set \boldsymbol{Y} of size \boldsymbol{t} that occurs in s sets S_{i}

Itemsets:
$a=\{b, c, d\}$
$b=\{d\}$
$c=\{b, d, e, f\}$
$d=\{e, f\}$
$e=\{b, d\}$
$f=\{ \}$

Frequent itemsets support > 1
\{b,d\}: support 3
\{e,f\}: support 2

