Chapter 7:

Text Processing & High Dimensional Data

Recap Data Science Intro:

... Data contains value and knowledge ...

- ... but to extract the knowledge data needs to be
- Stored
- Managed

up to now, we have learned about this.

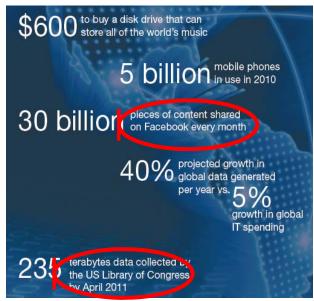
Recap Data Science Intro:

... Data contains value and knowledge ...

- ... but to extract the knowledge data needs to be
- Stored
- Managed
- And ANALYZED

- _ up to now, we have
- learned about this.
- **Now, we will focus on this part**
- → Big Data Analytics ≈ Data Mining ≈ Predictive Analytics ≈ Data Science

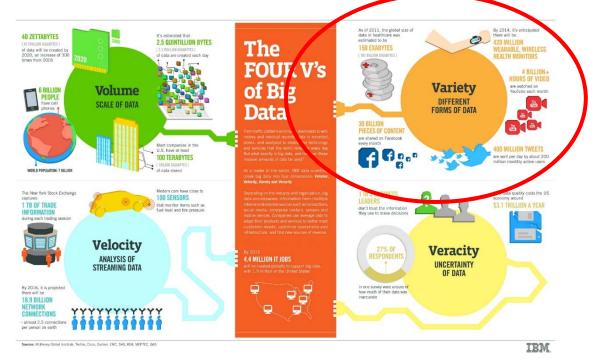
Recap Data Science Intro:



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Variety: different forms of data

- Unstructured, e.g. data in form of text
- Potentially high dimensional data



LMU

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High-Dimensional Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Text Processing – Motivation

Given: Set of documents

Searching for patterns in large sets of document objects

 \rightarrow Analysing the similarity of objects

In many applications the documents are not identical, yet they share large portions of their text:

- Plagiarism
- Mirror Pages
- Articles from the same source

Problems in the field of Text Mining:

- Stop words (e.g. for, the, is, which ,...)
- Identify word stem
- High dimensional features (d > 10'000)
- Terms are not equally relevant within a document
- The frequency of terms are often $h_i = 0 \rightarrow$ very sparse feature space

→ We will focus on character-level similarity, not *,similar meaning*'

Text Processing – Motivation (Common approaches - for details see KDD I)

How to handle relevancy of a term?

TF-IDF (Term Frequency * Inverse Document Frequency)

- Emprical probability of term t in document d: $TF(t, d) = \frac{n(t,d)}{\max_{w \in d} n(w,d)}$ frequency n(t,d) := number of occurrences of term (word) t in document d
- Inverse probability of t regarding all documents: $IDF(t) = \frac{|DB|}{|\{d|d \in DB \land t \in d\}|}$
- Feature vector is given by: $r(d) = (TF(t_1, d) * IDF(t_1), ..., TF(t_n, d) * IDF(t_n))$

How to handle sparsity?

Term frequency often $0 \Rightarrow$ diversity of mutual Euclidean distances quite low \rightarrow other distance measures required:

- Jaccard Coefficient: $d_{Jaccard}(D_1, D_2) = \frac{|D_1 \cap D_2|}{|D_1 \cup D_2|}$ (Documents \rightarrow set of terms)
- **Cosinus Coefficient:** $d_{Cosinus}(D_1, D_2) = \frac{\langle D_1, D_2 \rangle}{\|D_1\| \cdot \|D_2\|}$ (useful for high-dim. data)

Shingling of Documents

General Idea: construct a set of short strings that appear within a document

K- shingles Definition: A k-shingle is any substring of length k found within the document. → Associate with each document the set of k-shingles that appear n times within that document

Hashing Shingles:

Idea: pick hash function that maps strings of length k to some number of buckets and treat the resulting bucket number as the shingle
 → set representing document is then set of integers

Problem: Sets of shingles are large

→ replace large sets by much smaller representations called , signatures'

Matrix representation of Sets

Characteristic matrix:

- columns correspond to the sets (documents)
- rows correspond to elements of the universal set from which elements (shingles) of the columns are drawn
 documents

Example:

- universal set: {A,B,C,D,E},
- $S1 = \{A, D\}, S2 = \{C\}, S3 = \{B, D, E\}, S4 = \{A, C, D\}$

shingles

	G	documents				
Element	S1	S2	S3	S4		
А	1	0	0	1		
В	0	0	1	0		
С	0	1	0	1		
D	1	0	1	1		
Е	0	0	1	0		

Minhashing

Idea: To minhash a set represented by a column c_i of the characterisitic matrix, pick a permutation of the rows. The value of the minhash is the number of the first row, in the permutated order, with $h(c_i) = 1$

Example:

Suppose the order of rows ,beadc'

- h(S1) = A
- h(S2) = C
- h(S3) = B
- h(S4) = A

Element	S 1	S 2	S 3	S 4
В	0	0	1	0
E	0	0	1	0
А	1	0	0	1
D	1	0	1	1
С	0	1	0	1

Minhashing and Jaccard Similarity

The probability that the minhash function for a random permutation of rows produces the same value for two sets equals the Jaccard similarity of those sets

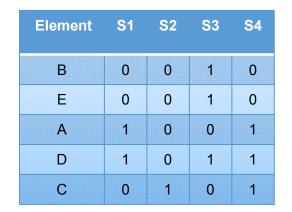
Three different classes of similarity between sets (documents)

- Type X rows have 1 in both cols
- Type Y rows have 1 in one of the columns
- Type Z rows have 0 in both rows

Example

Considering the cols of S1 and S3: The probability that h(S1) = h(S3) is given by: $SIM(S1, S3) = \frac{x}{(x+y)} = \frac{1}{4}$

(Note that x is the size of $S1 \cap S2$ and (x+y) is the size of $S1 \cup S2$)



Minhash Signatures

- Pick a random number *n* of permutations of the rows
- Vector $[h_1(S), h_2(S), ..., h_n(S)]$ represents the minhash signature for S
- Put the specific vectors together in a matrix, forms the signature matrix
- Note that the *signature matrix* has the same number of columns as input matrix *M* but only *n* rows

How to compute minhash signatures:

- 1. Compute $h_1(S), h_2(S), ..., h_n(S)$
- 2. For each row r: For each column c do the following:
 - (a) if c has 0 in row r, do nothing
 - (b) if c has 1 in row r then for each i = 1, 2, ..., n set
 - $SIG(i,c) = \min(SIG(i,c), h_i(r))$

→ Signature matrix allows to estimate the Jaccard similarities of the underlying sets!

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = (x + 1) \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S2	S 3	S4	h1(x)	h2(x)
0		0	0		1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

1st row

Check Sig for S1 and S4: $SIG(i,c) = \min(SIG(i,c), h_i(r))$

```
S1: \min(\infty, 1) = 1
\min(\infty, 1) = 1
S4: \min(\infty, 1) = 1
\min(\infty, 1) = 1
Big Data Management and Analytics
```

In	it i	21	iza	±17	n
	ιu	aı	ıza	uu	ווע

1.	s1	s2	s3	s4
h1	∞	∞	∞	∞
h2	8	∞	∞	∞
		•		
2.	s1	▼ s2	s3	s4
2. h1	s1 1	♥ s2 ∞	s3 ∞	s4 1

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S2	S 3	S4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

2nd row Check Sig for S3: $SIG(i,c) = \min(SIG(i,c), h_i(r))$

S3: $\min(\infty, 2) = 2$ $\min(\infty, 4) = 4$ initialization

1.	s1	s2	s3	s4
h1	∞	∞	∞	∞
h2	∞	∞	∞	∞
2.	s1	s2	s3	s4
h1	1	∞	∞	1
h2	1	∞	œ	1
h2	1	∞	œ	1
h2 3.	1 s1	∞ ↓ s2	∞ s3	1 54

Minhash Signatures - Example

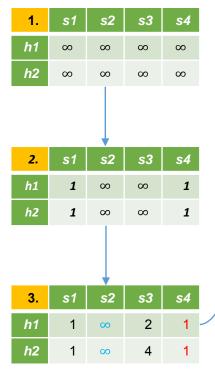
- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S2	S 3	S 4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	(1)	0	(1)	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

3rd row Check Sig for S2 and S4: $SIG(i,c) = min(SIG(i,c), h_i(r))$

S2: $\min(\infty, 3) = 3$ $\min(\infty, 2) = 2$ S4: $\min(1,3) = 1$ $\min(1,2) = 1$ Big Data Management and Analytics

init	1 D I	1701	non
ΠΠL	aı	ιζαι	ion



4.	s1	s2	s3	s4
h1	1	3	2	1
h2	1	2	4	1

Minhash Signatures - Example

- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S 2	S 3	S4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	(1)	0	(1)	1	4	0
4	0	0	1	0	0	3

4th row Check Sig for S1,S3,S4: $SIG(i,c) = \min(SIG(i,c), h_i(r))$

S1: $\min(1,4) = 1$ S4: $\min(1,4) = 1$ $\min(1,0) = 0$ $\min(1,0) = 0$ S3: $\min(2,4) = 2$ $\min(4,0) = 0$

Big Data Management and Analytics

• •			
1011	FINI	1701	n
	пат	izati	



4.	s1	s2	s3	s4
h 1	1	3	2	1
h2	1	2	4	1
5.	s1	s2	s3	s4
				34
h1	1	3	2	34 1

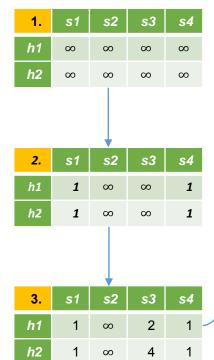
Minhash Signatures - Example

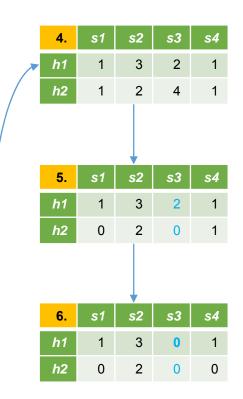
- Suppose two hash functions : $h_1(x) = x + 1 \mod 5$ and $h_2(x) = (3x + 1) \mod 5$

Element	S1	S 2	S 3	S 4	h1(x)	h2(x)
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

5th row Check Sig for S3: $SIG(i,c) = \min(SIG(i,c), h_i(r))$

S3: min(2, 0) = 0min(0,3) = 0 initialization





Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

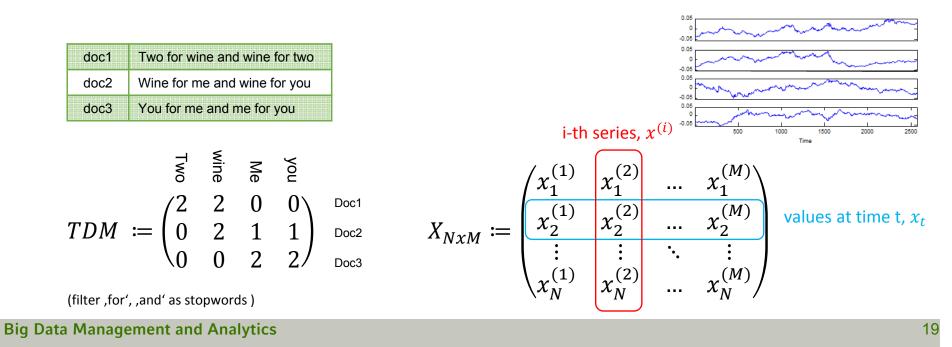
- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Modeling data as matrices

Matrices often arise with data:

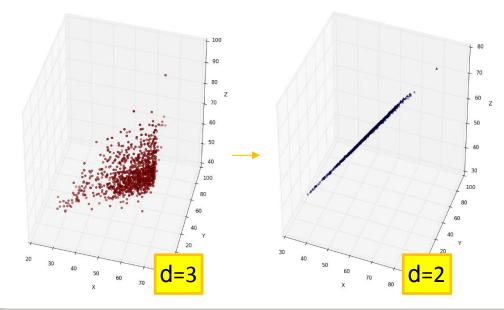
- n objects (documents, images, web pages, time series...)
- each with *m* features

\rightarrow Can be represented by an $n \times m$ matrix



Why reduce Dimensions?

- Discover hidden correlations
- Remove redundant and noisy features
- Interpretation and visualization
- Easier storage and processing of the data



Axes of k-dimensional subspace are effective representation of the data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

PCA Formulation

Goal of PCA: find a lower-dimensional k < d representation of raw data

- **X** is *n x d* (raw data)
- **Z** = **XP** is *n x k* (reduces representation, *P* as PCA 'scores')
- **P** is *d x k* (columns are *k* principal components)
- Variance constraints

$$\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} P \end{bmatrix}$$

PCA Formulation – Recall definition of Variance and Covariance

- $X \in \mathbb{R}^{n \times d}$: matrix of raw data
- x_i : *i*-th datapoint
- **µ** : mean

Variance: Measure of the spread of the data:

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Covariance: Measure of how much two random variables vary together (zero mean assumption):

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i y_i)$$

Covariance Matrix: Variance of all features and the pairwise correlations between them (zero mean assumption):

$$\Sigma_X = \begin{pmatrix} Var(X_1) & \cdots & Cov(X_1, X_d) \\ \vdots & \ddots & \vdots \\ Cov(X_d, X_1) & \cdots & Var(X_d) \end{pmatrix} = \frac{1}{n} X^T X$$

Big Data Management and Analytics

PCA Formulation

Goal of PCA: find a lower-dimensional k < d representation of raw data

- X is *n x d* (raw data)
- **Z** = **XP** is *n x k* (reduces representation, PCA 'scores')
- **P is** *d x k* (columns are k principal components)
- Variance constraints
- **Q**: Which constraints in reduced representation?
 - No feature correlation, i.e. all off-diagonals in C_Z are zero
 → avoids redundancy
 - Rank-ordered features by variance

PCA Solution

All matrices have an eigendecomposition:

- $C_x = U \Lambda U^T$ (eigendecomposition)
- Λ is $d \times d$ (diagonals are **sorted** *eigenvalues*, off-diagonals are zero)
- **U** is $d \times d$ (columns are *eigenvectors*, **sorted** by their associated eigenvalues)

The d eigenvectors are orthonormal directions of max variance

- Associated eigenvalues equal variance in these directions
- 1st eigenvector is direction of max variance (variance is λ_1)

PCA - Which k<d to choose for dimensional reduction?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Analysis: Capture , most' variance in the data

• As eigenvalues are sorted variances in the directions specified by eigenvectors, we can choose a fraction of retained variance:

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$$

E.g. choose k such that we retain 95% of the variance

Excursus: Eigenvectors and eigenvalues

Definition of the *algebraic eigenvalue problem*:

Let A be a square $d \ x \ d$ matrix. If there exists a real scalar λ and a $d \ x \ 1$ vector $v \neq 0$, such that:

$$Av = \lambda v$$
,

then λ is called an **eigenvalue** of A and v is the associated **eigenvecto**r.

How to find eigenvalues / eigenvectors of A?

- Solving the equation: $det(A \lambda I_{dxd}) = 0$ yields the eigenvalues
- For each eigenvalue λ_i , we find its eigenvector by solving the system of equations $(A \lambda_i I_{dxd}) v_i = 0$

Excursus: Eigenvectors and eigenvalues

Example:

$$A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix}$$

$$A - \lambda * I_{2x2} = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 - \lambda & 3 \\ 2 & 1 - \lambda \end{pmatrix}$$

$$\det(A - \lambda * I_{2x2}) = (2 - \lambda)(1 - \lambda) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda + 1) * (\lambda - 4)$$

→ Largest eigenvalue (in magnitude) is $\lambda_1 = 4$, smallest eigenvalue $\lambda_2 = -1$

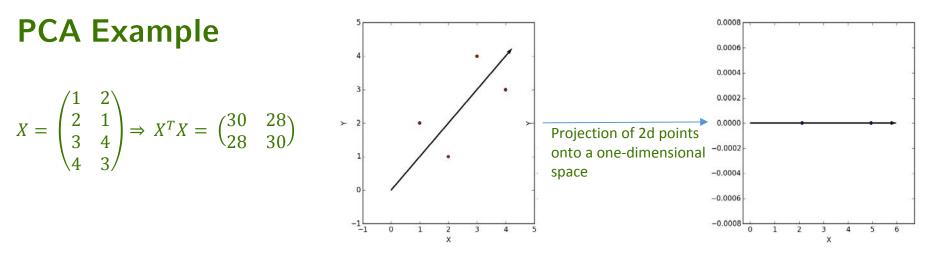
$$(A - \lambda_1 * I_{2x2})v_1 = \begin{pmatrix} -2 & 3\\ 2 & -3 \end{pmatrix} v_1 = \vec{0} \implies v_1 = \begin{pmatrix} 3\\ 2 \end{pmatrix}$$
$$(A - \lambda_2 * I_{2x2})v_2 = \begin{pmatrix} 3 & 3\\ 2 & 2 \end{pmatrix} v_2 = \vec{0} \implies v_2 = \begin{pmatrix} -1\\ 1 \end{pmatrix}$$

PCA Solution

Computation

- Treat a set of tuples as a matrix M
- Find eingevectors for $M^T M$ or $M M^T$
 - Eigenvectors can be thought of a rotation in high-dimensional space
 - Principal eigenvector yields the axis along which the variance of the data is maximizied

→ High-dimensional data can be replaced by its projection onto the most important axes



→ **Eigenvalues:** solving det($X^T X - \lambda I$) = 0 yields $\lambda_1 = 58, \lambda_2 = 2$

→ **Eigenvectors:** solving
$$(X^T X - \lambda_i I) v_i$$
 yields $E = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$

→ **Projection** of data on principal component by using first k columns of E:

$$XE_{1} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 3/\sqrt{2} \\ 3/\sqrt{2} \\ 7/\sqrt{2} \\ 7/\sqrt{2} \\ 7/\sqrt{2} \end{pmatrix}$$

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Singular Value Decomposition (SVD) - Generalization of the eigenvalue decomposition

Let X_{nxd} be a data matrix and let k be its rank. We can decompose X into matrices U, Σ, V as follows:

- X (Input data matrix) is a *n* x *d* matrix (e.g. n customers, d products)
- **U (Left singular vectors)** is a *n x n* column-orthonormal matrix
- Σ (Singular values) is a diagonal $n \times d$ with the elements being the singular values of X
- V (Right singular vecors) is a *d* x *d* column-orthonormal matrix

Singular Value Decomposition (SVD)

Computing SVD of a Matrix

Connected to eingevalues of matrices $X^T X$ and $X X^T$ $X^T X = (U \Sigma V^T)^T U \Sigma V^T = (V^T)^T \Sigma^T U^T U \Sigma V^T = V \Sigma^2 V^T$

 \rightarrow Multiplying each side with V:

 $(X^T X) V = V \Sigma^2$

Remember the Eigenwert-Problem: $Av = \lambda v$

- → Same algorithm that computes the *eigenpairs* for $X^T X$ gives us matrix V for SVD
- \rightarrow Square root of singular values gives us the eigenvalues for $X^T X$
- \rightarrow U can be found by the same procedure as V, just with XX^T

Singular Value Decomposition (SVD)

How to reduce the dimensions?

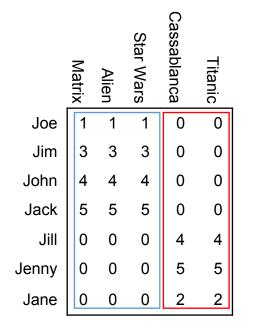
Let $X = U \Sigma V^T$ (with rank(A) = r) and $Y = U S V^T$, with $S \in \mathbb{R}^{r \times r}$ where $s_i = \lambda_i$ (i = 1, ..., k) else $s_i = 0$

$$\begin{pmatrix} x_{1,1} & \cdots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,d} \end{pmatrix} = \begin{pmatrix} u_{1,1} & \cdots & u_{1,r} \\ \vdots & \ddots & \vdots \\ u_{n,1} & \cdots & u_{n,r} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 & \cdots \\ 0 & \ddots & \vdots \\ \vdots & \cdots & \lambda_r \end{pmatrix} \end{pmatrix} \begin{pmatrix} v_{1,1} & \cdots & v_{1,d} \\ \vdots & \ddots & \vdots \\ v_{r,1} & \cdots & v_{r,d} \end{pmatrix}$$

→ New matrix Y is a **best rank-k approximation to X**

Singular Value Decomposition (SVD) – Example

Ratings of movies by users



Let A be a mxn matrix, and let r be the rank of A

Here:

- a rank-2 matrix representing ratings of movies by users
- 2 underlying concepts: science-fiction + romance

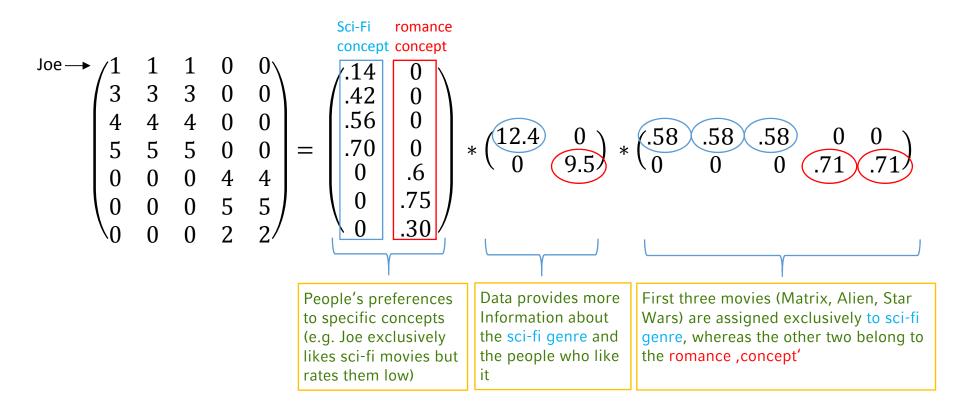
Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf

Singular Value Decomposition (SVD) – Example

Ratings of movies by users - SVD

Singular Value Decomposition (SVD) – Example

Ratings of movies by users - SVD Interpretation



SVD and low-rank approximations

Summary

Basic SVD Theorem: Let A be an m x n matrix with rank p

- Matrix A can be expressed as $A = U \Sigma V^T$
- Truncate SVD of A yields 'best' rank-k approximation given by $A_k = U_k \Sigma_k V_k^T$, with k < d

Properties of truncated SVD:

- Often used in data analysis via PCA
- Problematic w.r.t sparsity, interpretability, etc.

Problems with SVD / Eigen-analysis

Problems: arise since structure in the data is not respected by mathematical operations on the data

Question: Is there a 'better' low-rank matrix approximations in the sense of ...

- ... structural properties for certain application
- ... respecting relevant structure
- ... interpretability and informing intuition

→ Alternative: CX and CUR matrix decompositions

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

CX and CUR matrix decompositions

Definition CX : A CX decomposition is a low-rank approximation explicitly expressed in terms of a small number of *columns of A*

Definition CUR : A CUR matrix decomposition is a low-rank approximation explicitly expressed in terms of a small number of *columns* and *rows of A*

$$A \qquad \approx \qquad C \qquad * \qquad U \qquad * \qquad R \qquad$$

CUR Decomposition

- In large-data applications the raw data matrix M tend to be very sparse (e.g. matrix of customers/products , movie recommendation systems...)
- Problem with SVD :
 - Even if M is sparse, the SVD yields two dense matrices U and V
- Idea of CUR Decomposition:
 - By sampling a sparse Matrix M, we create two sparse matrices C ('columns') and R ('rows')

Input: let **M** be a **m** x n matrix

1.Step:

- Choose a number **r** of 'concepts' (c.f. rank of matrix)
 - Perform biased Sampling of *r* cols from *M* and create a *m x r matrix C*
 - Perform biased Sampling of **r** rows from **M** and create a **r x n matrix R**

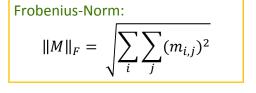
2.Step:

- Construct **U** from **C** and **R**:
 - Create a **r x r matrix W** by the intersection of the chosen cols from C and rows from R
 - Apply SVD on $W = X \Sigma Y^t$
 - Compute Σ^+ , the moore-penrose pseudoinverse of Σ
 - Compute $\boldsymbol{U} = \boldsymbol{Y}(\boldsymbol{\Sigma}^+)^2 \boldsymbol{X}^t$

CUR – how to sample rows and cols from M?

Sample columns for C:

Input: matrix $M \in \mathbb{R}^{m \times n}$, sample size rOutput: $C \in \mathbb{R}^{m \times r}$ 1. For x = 1 : n do 2. $P(x) = \sum_{i} (m_{i,x})^{2} / ||M||_{F}^{2}$ 3. For y = 1 : r do 4. Pick $z \in 1 : n$ based on Prob(x) 5. $C(:, y) = M(:, z) / \sqrt{r * P(z)}$



(sampling of R for rows analogous)

Example - Sampling

	Matrix	Alien	Star Wars	Cassablanca	Titanic
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

Sample columns:

$$\sum_{i} m_{i,1} = \sum_{i} m_{i,2} = \sum_{i} m_{i,3} = 1^{2} + 3^{2} + 4^{2} + 5^{2} = 51$$
$$\sum_{i} m_{i,4} = \sum_{i} m_{i,5} = 4^{2} + 5^{2} + 2^{2} = 45$$
FrobeniusNorm : $||M||_{F}^{2} = 243$
$$\Rightarrow P(x_{1}) = P(x_{2}) = P(x_{3}) = \frac{51}{243} = 0.210$$

→
$$P(x_4) = P(x_5) = \frac{45}{243} = 0.185$$

Example - Sampling								
	Matrix	Alien	Star Wars	Cassablanca	Titanic	Sample columns: • Let r = 2 • Randomly choosen columns, e.g. Star Wars + Cassablanca $[1,3,4,5,0,0,0]^T \frac{1}{\sqrt{r*P(x_2)}} = [1,3,4,5,0,0,0]^T \frac{1}{\sqrt{2*0.210}} = [1.54, 4.63, 6.17, 7.72, 0, 0,0]^T$		
Joe		1		0	0	$\sqrt{r * P(x_3)}$ $\sqrt{2 * 0.210}$		
Jim	3	3	3	0	0	1 1		
John	4	4	4	0	0	$[0,0,0,0,4,5,2]^T \frac{1}{\sqrt{r * P(x_4)}} = [0,0,0,0,4,5,2]^T \frac{1}{\sqrt{2 * 0.185}} = [0,0,0,0,0,6.58,8.22,3.29]^T$		
Jack	5	5	5	0	0	$\sqrt{7 + 1} (\lambda_4)$ $\sqrt{2 + 0.100}$		
Jill	0	0	0	4	4	<u>∕</u> 1.54 0 ∖		
Jenny	0	0	0	5	5	$\begin{pmatrix} 4.63 & 0 \\ 6.17 & 0 \end{pmatrix}$		
Jane	0	0	0	2	2	$=> C = \begin{pmatrix} 1.54 & 0\\ 4.63 & 0\\ 6.17 & 0\\ 7.72 & 0\\ 0 & 6.58\\ 0 & 8.22 \end{pmatrix}$ R is constructed analogous		

Input: let **M** be a **m** x n matrix

1.Step:

- Choose a number **r** of 'concepts' (c.f. rank of matrix)
 - Perform biased Sampling of **r** cols from **M** and create a **m** x **r** matrix **C**
 - Perform biased Sampling of **r** rows from **M** and create a **r x n matrix R**

2.Step:

- Construct **U** from **C** and **R**:
 - Create a **r** x **r matrix** W by the intersection of the chosen cols from C and rows from R
 - Apply SVD on $W = X \Sigma Y^T$
 - Compute Σ^+ , the moore-penrose pseudoinverse of Σ
 - Compute $U = Y(\Sigma^+)^2 X^T$

Example – Calculating U

Suppose C (Star Wars, Cassablance) and R (Jenny, Jack)

 $\rightarrow W$ as intersection of cols from C and rows from R:

$$W = \begin{pmatrix} 0 & 5\\ 5 & 0 \end{pmatrix}$$

Ensure the correct order!

	Matrix	Alien	Star Wars	Cassablanca	Titanic
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

 \rightarrow SVD applied on W:

$$W = \begin{pmatrix} 0 & 5 \\ 5 & 0 \end{pmatrix} = X \Sigma Y^{T} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

 \rightarrow Pseudo-Inverse of Σ (replace diagonal entries with their numerical inverse)

$$\Sigma^+ = \begin{pmatrix} 1/5 & 0\\ 0 & 1/5 \end{pmatrix}$$

 \rightarrow Compute U

$$U = Y (\Sigma^{+})^{2} X^{T} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/5 & 0 \\ 0 & 1/5 \end{pmatrix}^{2} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1/25 \\ 1/25 & 0 \end{pmatrix}$$

Sources

High Dimensionality Data

- [1] Less is More: Compact Matrix Decomposition for Large Sparse Graphs, Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos, Proceedings of the 2007 SIAM International Conference on Data Mining. 2007, 366-377
- [2] Rajaraman, A.; Leskovec, J. & Ullman, J. D. (2014), Mining Massive Datasets .