Chapter 7:

Text Processing \& High Dimensional Data

Introduction

Recap Data Science Intro:
... Data contains value and knowledge ...

... but to extract the knowledge data needs to be

- Stored
- Managed
up to now, we have learned about this.

Recap Data Science Intro:
... Data contains value and knowledge ...

... but to extract the knowledge data needs to be

- Stored
- Managed
- And ANALYZED
up to now, we have learned about this. Now, we will focus on this part
\rightarrow Big Data Analytics \approx Data Mining \approx Predictive Analytics \approx Data Science

Introduction

Recap Data Science Intro:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Variety: different forms of data

- Unstructured, e.g. data in form of text
- Potentially high dimensional data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High-Dimensional Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Text Processing - Motivation

Given: Set of documents
Searching for patterns in large sets of document objects
\rightarrow Analysing the similarity of objects
In many applications the documents are not identical, yet they share large portions of their text:

- Plagiarism
- Mirror Pages
- Articles from the same source

Problems in the field of Text Mining:

- Stop words (e.g. for, the, is, which ,...)
- Identify word stem
- High dimensional features ($\mathrm{d}>10^{\prime} 000$)
- Terms are not equally relevant within a document
- The frequency of terms are often $h_{i}=0 \rightarrow$ very sparse feature space
\rightarrow We will focus on character-level similarity, not ,similar meaning'

Text Processing - Motivation (Common approaches - for details see KDD I)

How to handle relevancy of a term?

TF-IDF (Term Frequency * Inverse Document Frequency)

- Emprical probability of term t in document $d: \boldsymbol{T F}(\boldsymbol{t}, \boldsymbol{d})=\frac{n(t, d)}{\max _{w \in d} n(w, d)}$
frequency $n(t, d):=$ number of occurrences of term (word) t in document d
- Inverse probability of t regarding all documents: $\operatorname{IDF}(\mathbf{t})=\frac{|D B|}{|\{d \mid d \in D B \wedge t \in d\}|}$
- Feature vector is given by: $r(d)=\left(T F\left(t_{1}, d\right) * \operatorname{IDF}\left(t_{1}\right), \ldots, T F\left(t_{n}, d\right) * \operatorname{IDF}\left(t_{n}\right)\right.$

How to handle sparsity?

Term frequency often $0=>$ diversity of mutual Euclidean distances quite low \rightarrow other distance measures required:

- Jaccard Coefficient: $d_{\text {Jaccard }}\left(D_{1}, D_{2}\right)=\frac{\left|D_{1} \cap D_{2}\right|}{\left|D_{1} \cup D_{2}\right|}$ (Documents \rightarrow set of terms)
- Cosinus Coefficient: $d_{\text {Cosinus }}\left(D_{1}, D_{2}\right)=\frac{\left\langle D_{1}, D_{2}\right\rangle}{\left\|D_{1}\right\| *\left\|D_{2}\right\|}$ (useful for high-dim. data)

Shingling of Documents

General Idea: construct a set of short strings that appear within a document
K-shingles
Definition: A k-shingle is any substring of length k found within the document.
\rightarrow Associate with each document the set of k-shingles that appear n times within that document

Hashing Shingles:

Idea: pick hash function that maps strings of length k to some number of buckets and treat the resulting bucket number as the shingle \rightarrow set representing document is then set of integers

Similarity-Preserving Summaries of Sets

Problem: Sets of shingles are large
\rightarrow replace large sets by much smaller representations called ,signatures'

Matrix representation of Sets

Characteristic matrix:

- columns correspond to the sets (documents)
- rows correspond to elements of the universal set from which elements (shingles) of the columns are drawn documents

Similarity-Preserving Summaries of Sets

Minhashing

Idea: To minhash a set represented by a column c_{i} of the characterisitic matrix, pick a permutation of the rows. The value of the minhash is the number of the first row, in the permutated order, with $h\left(c_{i}\right)=1$

Example:
Suppose the order of rows ,beadc'

- $h(S 1)=A$
- $h(S 2)=C$
- $h(S 3)=B$
- $h(S 4)=A$

Element	S1	S2	S3	S4
B	0	0	1	0
E	0	0	1	0
A	1	0	0	1
D	1	0	1	1
C	0	1	0	1

Similarity-Preserving Summaries of Sets

Minhashing and Jaccard Similarity

The probability that the minhash function for a random permutation of rows produces the same value for two sets equals the Jaccard similarity of those sets

Three different classes of similarity between sets (documents)

- Type X rows have 1 in both cols
- Type Y rows have 1 in one of the columns
- Type Z rows have 0 in both rows

Example

Considering the cols of S1 and S3:
The probability that $h(S 1)=h(S 3)$ is given by:

$$
\operatorname{SIM}(S 1, S 3)=\frac{x}{(x+y)}=\frac{1}{4}
$$

(Note that x is the size of $S 1 \cap S 2$ and ($\mathrm{x}+\mathrm{y}$) is the size of $S 1 \cup S 2$)

Element	S1	S2	S3	S4
B	0	0	1	0
E	0	0	1	0
A	1	0	0	1
D	1	0	1	1
C	0	1	0	1

Similarity-Preserving Summaries of Sets

Minhash Signatures

- Pick a random number n of permutations of the rows
- Vector $\left[h_{1}(S), h_{2}(S), \ldots, h_{n}(S)\right]$ represents the minhash signature for S
- Put the specific vectors together in a matrix, forms the signature matrix
- Note that the signature matrix has the same number of columns as input matrix M but only n rows

How to compute minhash signatures:

1. Compute $h_{1}(S), h_{2}(S), \ldots, h_{n}(S)$
2. For each row r : For each column c do the following:
(a) if c has 0 in row r, do nothing
(b) if c has 1 in row r then for each $i=1,2, \ldots, n$ set $S I G(i, c)=\min \left(S I G(i, c), h_{i}(r)\right)$
\rightarrow Signature matrix allows to estimate the Jaccard similarities of the underlying sets!

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions: $h_{1}(x)=(x+1) \bmod 5$ and $h_{2}(x)=(3 x+1) \bmod 5$
initialization

Element	S 1	S 2	S 3	S 4	$\mathrm{~h} 1(\mathrm{x})$	$\mathrm{h} 2(\mathrm{x})$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

1st row
Check Sig for S1 and S4:

1.	$s 1$	$s 2$	$s 3$	$s 4$
$h 1$	∞	∞	∞	∞
h2	∞	∞	∞	∞

$S I G(i, c)=\min \left(S I G(i, c), h_{i}(r)\right)$

S1: $\min (\infty, 1)=1$
$\min (\infty, 1)=1$
S4: $\min (\infty, 1)=1$

$$
\min (\infty, 1)=1
$$

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions: $h_{1}(x)=x+1 \bmod 5$ and $h_{2}(x)=(3 x+1) \bmod 5$

Element	S 1	S 2	S 3	S 4	$\mathrm{~h} 1(\mathrm{x})$	$\mathrm{h} 2(\mathrm{x})$
0	1	0	0	1	1	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

2nd row
Check Sig for S3:
$\operatorname{SIG}(i, c)=\min \left(S I G(i, c), h_{i}(r)\right)$
S3: $\min (\infty, 2)=2$

$$
\min (\infty, 4)=4
$$

initialization

1.	$s 1$	$s 2$	$s 3$	$s 4$
$h 1$	∞	∞	∞	∞
h2	∞	∞	∞	∞

2.	$s 1$	$s 2$	$s 3$	$s 4$
$h 1$	$\mathbf{1}$	∞	∞	$\mathbf{1}$
h2	$\mathbf{1}$	∞	∞	$\mathbf{1}$

3.	s1	$s 2$	$s 3$	$s 4$
$h 1$	1	∞	2	1
$h 2$	1	∞	4	1

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : $h_{1}(x)=x+1 \bmod 5$ and $h_{2}(x)=(3 x+1) \bmod 5$

Element	S 1	S 2	S 3	S 4	$\mathrm{~h} 1(\mathrm{x})$	$\mathrm{h} 2(\mathrm{x})$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$
3	1	0	1	1	4	0
4	0	0	1	0	0	3

3rd row
Check Sig for S2 and S4:
$\operatorname{SIG}(i, c)=\min \left(S I G(i, c), h_{i}(r)\right)$
S2: $\min (\infty, 3)=3$ $\min (\infty, 2)=2$
S4: $\min (1,3)=1$

$$
\min (1,2)=1
$$

initialization

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions : $h_{1}(x)=x+1 \bmod 5$ and $h_{2}(x)=(3 x+1) \bmod 5$

Element	S 1	S 2	S 3	S 4	$\mathrm{~h} 1(\mathrm{x})$	$\mathrm{h} 2(\mathrm{x})$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{0}$
4	0	0	1	0	0	3

4th row
Check Sig for S1,S3,S4:
$\operatorname{SIG}(i, c)=\min \left(S I G(i, c), h_{i}(r)\right)$
S1: $\min (1,4)=1 \quad S 4: \min (1,4)=1$ $\min (1,0)=0 \quad \min (1,0)=0$
S3: $\min (2,4)=2$

$$
\min (4,0)=0
$$

initialization

1.	$s 1$	$s 2$	$s 3$	$s 4$
$h 1$	∞	∞	∞	∞
h2	∞	∞	∞	∞

2.	$s 1$	$s 2$	$s 3$	$s 4$
h1	$\mathbf{1}$	∞	∞	$\mathbf{1}$
h2	$\mathbf{1}$	∞	∞	1

Similarity-Preserving Summaries of Sets

Minhash Signatures - Example

- Suppose two hash functions: $h_{1}(x)=x+1 \bmod 5$ and $h_{2}(x)=(3 x+1) \bmod 5$

Element	S 1	S 2	S 3	S 4	$\mathrm{~h} 1(\mathrm{x})$	$\mathrm{h} 2(\mathrm{x})$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3}$

5th row
Check Sig for S3:
$\operatorname{SIG}(i, c)=\min \left(S I G(i, c), h_{i}(r)\right)$
S3: $\min (2,0)=0$
$\min (0,3)=0$
initialization

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Modeling data as matrices
Matrices often arise with data:

- \boldsymbol{n} objects (documents, images, web pages, time series...)
- each with \boldsymbol{m} features
\rightarrow Can be represented by an $\boldsymbol{n} \boldsymbol{x} \boldsymbol{m}$ matrix

doc1	Two for wine and wine for two
doc2	Wine for me and wine for you
doc3	You for me and me for you

values at time t, x_{t}

High Dimensionality Data

Why reduce Dimensions?

- Discover hidden correlations
- Remove redundant and noisy features
- Interpretation and visualization
- Easier storage and processing of the data

Axes of k-dimensional subspace are effective representation of the data

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

High Dimensionality Data

PCA Formulation

Goal of PCA: find a lower-dimensional $k<d$ representation of raw data

- X is $n x d$ (raw data)
- $\boldsymbol{Z}=\boldsymbol{X P}$ is $n x k$ (reduces representation, P as PCA 'scores')
- \mathbf{P} is $\boldsymbol{d} \boldsymbol{x} \boldsymbol{k}$ (columns are k principal components)
- Variance constraints

$$
(z)=(x)(p)
$$

PCA Formulation - Recall definition of Variance and Covariance

- $\boldsymbol{X} \in \mathbb{R}^{\boldsymbol{n x d}}:$ matrix of raw data
- $\boldsymbol{x}_{\boldsymbol{i}}: i$-th datapoint
- $\boldsymbol{\mu}$: mean

Variance: Measure of the spread of the data:

$$
\operatorname{Var}(\mathrm{X})=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Covariance: Measure of how much two random variables vary together (zero mean assumption):

$$
\operatorname{Cov}(X, Y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i} y_{i}\right)
$$

Covariance Matrix: Variance of all features and the pairwise correlations between them (zero mean assumption):

$$
\Sigma_{X}=\left(\begin{array}{ccc}
\operatorname{Var}\left(X_{1}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{d}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{d}, X_{1}\right) & \cdots & \operatorname{Var}\left(X_{d}\right)
\end{array}\right)=\frac{1}{n} X^{T} X
$$

High Dimensionality Data

PCA Formulation

Goal of PCA: find a lower-dimensional $k<d$ representation of raw data

- X is $n x d$ (raw data)
- $\boldsymbol{Z}=\boldsymbol{X P}$ is $n x k$ (reduces representation, PCA 'scores')
- P is $\boldsymbol{d} \boldsymbol{x} \boldsymbol{k}$ (columns are k principal components)
- Variance constraints
- Q: Which constraints in reduced representation?
- No feature correlation, i.e. all off-diagonals in C_{Z} are zero
\rightarrow avoids redundancy
- Rank-ordered features by variance

PCA Solution

All matrices have an eigendecomposition:

- $\boldsymbol{C}_{x}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}$ (eigendecomposition)
- Λ is $d x d$ (diagonals are sorted eigenvalues, off-diagonals are zero)
- \boldsymbol{U} is $d x d$ (columns are eigenvectors, sorted by their associated eigenvalues)

The d eigenvectors are orthonormal directions of max variance

- Associated eigenvalues equal variance in these directions
- 1st eigenvector is direction of max variance (variance is λ_{1})

PCA - Which k<d to choose for dimensional reduction?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Analysis: Capture ,most' variance in the data

- As eigenvalues are sorted variances in the directions specified by eigenvectors, we can choose a fraction of retained variance:

$$
\frac{\sum_{i=1}^{k} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}}
$$

E.g. choose k such that we retain 95% of the variance

Excursus: Eigenvectors and eigenvalues

Definition of the algebraic eigenvalue problem:

Let A be a square $d x d$ matrix. If there exists a real scalar λ and a $d x 1$ vector $v \neq 0$, such that:

$$
A v=\lambda v
$$

then λ is called an eigenvalue of A and v is the associated eigenvector.

How to find eigenvalues / eigenvectors of A ?

- Solving the equation: $\operatorname{det}\left(A-\lambda \mathrm{I}_{d x d}\right)=0$ yields the eigenvalues
- For each eigenvalue λ_{i}, we find its eigenvector by solving the system of equations $\left(A-\lambda_{i} I_{d x d}\right) v_{i}=0$

High Dimensionality Data

Excursus: Eigenvectors and eigenvalues

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right) \\
& A-\lambda * I_{2 \times 2}=\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2-\lambda & 3 \\
2 & 1-\lambda
\end{array}\right) \\
& \operatorname{det}\left(A-\lambda * I_{2 \times 2}\right)=(2-\lambda)(1-\lambda)-6=\lambda^{2}-3 \lambda-4=(\lambda+1) *(\lambda-4) \\
& \rightarrow \text { Largest eigenvalue (in magnitude) is } \lambda_{1}=4 \text {, smallest eigenvalue } \lambda_{2}=-1 \\
& \left(A-\lambda_{1} * I_{2 \times 2}\right) v_{1}=\left(\begin{array}{cc}
-2 & 3 \\
2 & -3
\end{array}\right) v_{1}=\overrightarrow{0} \Rightarrow v_{1}=\binom{3}{2} \\
& \left(A-\lambda_{2} * I_{2 \times 2}\right) v_{2}=\left(\begin{array}{ll}
3 & 3 \\
2 & 2
\end{array}\right) v_{2}=\overrightarrow{0} \quad \Rightarrow v_{2}=\binom{-1}{1}
\end{aligned}
$$

PCA Solution

Computation

- Treat a set of tuples as a matrix M
- Find eingevectors for $M^{T} M$ or $M M^{T}$
- Eigenvectors can be thought of a rotation in high-dimensional space
- Principal eigenvector yields the axis along which the variance of the data is maximizied
\rightarrow High-dimensional data can be replaced by its projection onto the most important axes

PCA Example

$X=\left(\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3\end{array}\right) \Rightarrow X^{T} X=\left(\begin{array}{ll}30 & 28 \\ 28 & 30\end{array}\right)$

\rightarrow Eigenvalues: solving $\operatorname{det}\left(X^{T} X-\lambda I\right)=0$ yields $\lambda_{1}=58, \lambda_{2}=2$
\rightarrow Eigenvectors: solving $\left(X^{T} X-\lambda_{i} I\right) v_{i}$ yields $E=\left(\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right)$
\rightarrow Projection of data on principal component by using first k columns of E :
$X E_{1}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 3 & 4 \\ 4 & 3\end{array}\right)\binom{1 / \sqrt{2}}{1 / \sqrt{2}}=\left(\begin{array}{l}3 / \sqrt{2} \\ 3 / \sqrt{2} \\ 7 / \sqrt{2} \\ 7 / \sqrt{2}\end{array}\right)$

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

Singular Value Decomposition (SVD) - Generalization of the eigenvalue decomposition

Let $X_{n x d}$ be a data matrix and let k be its rank. We can decompose X into matrices U, Σ, V as follows:

$$
\left.\begin{array}{ccc}
\boldsymbol{X} & \\
\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right)
\end{array}\right)=\left(\begin{array}{ccc}
u_{1,1} & \cdots & u_{1, n} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \cdots & u_{n, n}
\end{array}\right) *\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{d}
\end{array}\right) *\left(\begin{array}{ccc}
v_{1,1} & \boldsymbol{V}^{\boldsymbol{T}} \\
\vdots & \ddots & v_{1, d} \\
v_{d, 1} & \cdots & v_{d, d}
\end{array}\right)
$$

- X (Input data matrix) is a $n x d$ matrix (e.g. n customers, d products)
- U (Left singular vectors) is a $n x n$ column-orthonormal matrix
- $\quad \Sigma$ (Singular values) is a diagonal $n x d$ with the elements being the singular values of X
- \mathbf{V} (Right singular vecors) is a $d x d$ column-orthonormal matrix

High Dimensionality Data

Singular Value Decomposition (SVD)

Computing SVD of a Matrix

Connected to eingevalues of matrices $X^{T} X$ and $X X^{T}$

$$
X^{T} X=\left(U \Sigma V^{T}\right)^{T} U \Sigma V^{T}=\left(V^{T}\right)^{T} \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

\rightarrow Multiplying each side with V :

$$
\left(X^{T} X\right) V=V \Sigma^{2}
$$

Remember the Eigenwert-Problem: $A v=\lambda v$
\rightarrow Same algorithm that computes the eigenpairs for $X^{T} X$ gives us matrix V for SVD
\rightarrow Square root of singular values gives us the eigenvalues for $X^{T} X$
$\rightarrow U$ can be found by the same procedure as V, just with $\mathrm{X} X^{T}$

Singular Value Decomposition (SVD)

How to reduce the dimensions?

Let $\mathrm{X}=U \Sigma V^{T}$ (with $\left.\operatorname{rank}(\mathrm{A})=r\right)$ and $\mathrm{Y}=U S V^{T}$, with $S \in \mathbb{R}^{r x r}$ where $s_{i}=$ $\lambda_{i}(i=1, \ldots, k)$ else $s_{i}=0$

$$
\left.\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \ddots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right)=\left(\begin{array}{ccc}
u_{1,1} & \cdots & u_{1, r} \\
\vdots & \ddots & \vdots \\
u_{n, 1} & \cdots & u_{n, r}
\end{array}\right]\left(\begin{array}{ccc}
\lambda_{1} & 0 & \cdots \\
0 & \ddots & \vdots \\
\vdots & \cdots & \lambda_{r} \\
\square & &
\end{array}\right]\right)\left(\begin{array}{ccc}
v_{1,1} & \cdots & v_{1, d} \\
\vdots & \ddots & \vdots \\
v_{r, 1} & \cdots & v_{r, d} \\
\square & &
\end{array}\right)
$$

\rightarrow New matrix Y is a best rank-k approximation to X

Singular Value Decomposition（SVD）－Example

Ratings of movies by users

	$\begin{aligned} & \text { Z } \\ & \substack{0 \\ \underset{x}{x}} \end{aligned}$		$\underset{\underset{\sim}{\omega}}{\stackrel{N}{\infty}}$		$\begin{aligned} & \overline{\overline{\mathrm{N}}} \\ & \text { ⿳亠二口刂土} \end{aligned}$
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	0	0	4	4
Jenny	0	0	0	5	5
Jane	0	0	0	2	2

Let A be a mxn matrix，and let r be the rank of A

Here：
－a rank－2 matrix representing ratings of movies by users
－ 2 underlying concepts：science－fiction＋romance

Singular Value Decomposition (SVD) - Example

Ratings of movies by users - SVD

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 0 & 0 & 2 & 2
\end{array}\right)=\left(\begin{array}{cc}
.14 & 0 \\
.42 & 0 \\
.56 & 0 \\
.70 & 0 \\
0 & .6 \\
0 & .75 \\
0 & .30
\end{array}\right) *\left(\begin{array}{cc}
12.4 & 0 \\
0 & 9.5
\end{array}\right) *\left(\begin{array}{ccccc}
.58 & .58 & .58 & 0 & 0 \\
0 & 0 & 0 & .71 & .71
\end{array}\right) \\
& \begin{array}{cccccc}
X & = & U & * & \sum & *
\end{array}
\end{aligned}
$$

Singular Value Decomposition (SVD) - Example

Ratings of movies by users - SVD Interpretation

High Dimensionality Data

SVD and low-rank approximations

Summary

Basic SVD Theorem: Let A be an $m \times n$ matrix with rank p

- Matrix A can be expressed as $A=U \Sigma V^{T}$
- Truncate SVD of A yields 'best' rank-k approximation given by $A_{k}=U_{k} \Sigma_{k} V_{k}^{T}$, with $k<d$

Properties of truncated SVD:

- Often used in data analysis via PCA
- Problematic w.r.t sparsity, interpretability, etc.

Problems with SVD / Eigen-analysis

Problems: arise since structure in the data is not respected by mathematical operations on the data

Question: Is there a 'better' low-rank matrix approximations in the sense of ...

- ... structural properties for certain application
- ... respecting relevant structure
- ... interpretability and informing intuition
\rightarrow Alternative: CX and CUR matrix decompositions

Outline

Text Processing

- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data

- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR

CX and CUR matrix decompositions

Definition CX : A CX decomposition is a low-rank approximation explicitly expressed in terms of a small number of columns of A

Definition CUR : A CUR matrix decomposition is a low-rank approximation explicitly expressed in terms of a small number of columns and rows of A

CUR Decomposition

- In large-data applications the raw data matrix M tend to be very sparse (e.g. matrix of customers/products, movie recommendation systems...)
- Problem with SVD :
- Even if M is sparse, the SVD yields two dense matrices U and V
- Idea of CUR Decomposition:
- By sampling a sparse Matrix M, we create two sparse matrices C ('columns') and R ('rows')

CUR Definition

Input: let \boldsymbol{M} be a m x n matrix

1.Step:

- Choose a number r of 'concepts' (c.f. rank of matrix)
- Perform biased Sampling of \boldsymbol{r} cols from \boldsymbol{M} and create a $\boldsymbol{m} \boldsymbol{x} \boldsymbol{r}$ matrix \boldsymbol{C}
- Perform biased Sampling of rows from \boldsymbol{M} and create a $\boldsymbol{r} \boldsymbol{x} \boldsymbol{n}$ matrix \boldsymbol{R}

2.Step:

Construct U from C and R.
Create a r x r matrix W by the intersection of the chosen cols from C and rows from R
Apply SVD on $W=X \Sigma Y^{t}$
Compute Σ^{+}, the moore-penrose pseudoinverse of Σ
Compute $U=Y\left(\Sigma^{+}\right)^{2} X^{t}$

High Dimensionality Data

CUR - how to sample rows and cols from M ?

Sample columns for C:

Input: matrix $M \in \mathbb{R}^{m x n}$, sample size r
Output: $C \in \mathbb{R}^{m x r}$

1. For $\mathrm{x}=1$: n do
2. $\mathrm{P}(\mathrm{x})=\sum_{i}\left(m_{i, x}\right)^{2} /\|M\|_{F}^{2}$
3. For $y=1$: r do

Frobenius-Norm:

$$
\|M\|_{F}=\sqrt{\sum_{i} \sum_{j}\left(m_{i, j}\right)^{2}}
$$

4. Pick $z \in 1: n$ based on $\operatorname{Prob}(x)$
5. $\mathrm{C}(:, \mathrm{y})=\mathrm{M}(:, \mathrm{z}) / \sqrt{r * P(z)}$
(sampling of R for rows analogous)

CUR Definition

Example - Sampling

Sample columns:

$$
\begin{aligned}
& \sum_{i} m_{i, 1}=\sum_{i} m_{i, 2}=\sum_{i} m_{i, 3}=1^{2}+3^{2}+4^{2}+5^{2}=51 \\
& \sum_{i} m_{i, 4}=\sum_{i} m_{i, 5}=4^{2}+5^{2}+2^{2}=45
\end{aligned}
$$

FrobeniusNorm : $\|M\|_{F}^{2}=243$
$\rightarrow P\left(x_{1}\right)=P\left(x_{2}\right)=P\left(x_{3}\right)=\frac{51}{243}=0.210$
$\rightarrow P\left(x_{4}\right)=P\left(x_{5}\right)=\frac{45}{243}=0.185$

CUR Definition

Example - Sampling
Sample columns:

High Dimensionality Data

CUR Definition

Input: let \boldsymbol{M} be a mxn matrix

```
1.Step:
    Choose a number r of 'concepts' (c.f. rank of matrix)
    Perform biased Sampling of r cols from M and create a m x r matrix C
    Perform biased Sampling of rrows from M and create ar x x m matrix R
```


2.Step:

- Construct \boldsymbol{U} from \boldsymbol{C} and \boldsymbol{R} :
- Create arxr matrix W by the intersection of the chosen cols from C and rows from R
- Apply SVD on $\boldsymbol{W}=\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{Y}^{\boldsymbol{T}}$
- Compute $\boldsymbol{\Sigma}^{+}$, the moore-penrose pseudoinverse of Σ
- Compute $\boldsymbol{U}=\boldsymbol{Y}\left(\boldsymbol{\Sigma}^{+}\right)^{2} \boldsymbol{X}^{T}$

CUR Definition

Example - Calculating U

Suppose C (Star Wars, Cassablance) and R (Jenny, Jack)

Sources

High Dimensionality Data
[1] Less is More: Compact Matrix Decomposition for Large Sparse Graphs, Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos, Proceedings of the 2007 SIAM International Conference on Data Mining. 2007, 366-377
[2] Rajaraman, A.; Leskovec, J. \& Ullman, J. D. (2014), Mining Massive Datasets .

