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Recap Data Science Intro:

… Data contains value and knowledge …

… but to extract the knowledge data needs to be
• Stored up to now, we have 
• Managed learned about this.
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Recap Data Science Intro:

… Data contains value and knowledge …

… but to extract the knowledge data needs to be
• Stored up to now, we have 
• Managed learned about this.
• And ANALYZED � Now, we will focus on this part

 Big Data Analytics ≈ Data Mining ≈ Predictive Analytics ≈ 
Data Science
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Recap Data Science Intro:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 
http://www.mmds.org

Variety: different forms of data
• Unstructured, e.g. data in form of text
• Potentially high dimensional data
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Text Processing
- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High-Dimensional Data
- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR
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Text Processing – Motivation

Given: Set of documents
Searching for patterns in large sets of document objects
 Analysing the similarity of objects
In many applications the documents are not identical, yet they share large 
portions of their text:

- Plagiarism
- Mirror Pages
- Articles from the same source

Problems in the field of Text Mining: 
- Stop words (e.g. for, the, is, which ,…)
- Identify word stem
- High dimensional features (d > 10‘000)
- Terms are not equally relevant within a document
- The frequency of terms are often 0 very sparse feature space

We will focus on character-level similarity, not ‚similar meaning‘
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Text Processing – Motivation (Common approaches - for details see KDD I)

How to handle relevancy of a term?
TF-IDF (Term Frequency * Inverse Document Frequency)

- Emprical probability of term t in document d: , 	 ,

∈ ,
frequency n(t,d) := number of occurrences of term (word) t in document d

- Inverse probability of t regarding all documents: 
| ∈ ∧ ∈

- Feature vector is given by: , ∗ , … , , ∗

How to handle sparsity? 
Term frequency often 0 => diversity of mutual Euclidean distances quite low
 other distance measures required:

- Jaccard Coefficient: , ∩
∪

(Documents set of terms)

- Cosinus Coefficient: , 	 ,
∗

(useful for high-dim. data)
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Shingling of Documents

General Idea: construct a set of short strings that appear within a document

K- shingles
Definition: A k-shingle is any substring of length k found within the

document. 
 Associate with each document the set of k-shingles that appear n times
within that document

Hashing Shingles:
Idea: pick hash function that maps strings of length k to some number of

buckets and treat the resulting bucket number as the shingle
 set representing document is then set of integers
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Similarity-Preserving Summaries of Sets

Problem: Sets of shingles are large 
 replace large sets by much smaller representations called ‚signatures‘

Matrix representation of Sets
Characteristic matrix:

- columns correspond to the sets (documents)
- rows correspond to elements of the universal set from which elements

(shingles) of the columns are drawn

Example: 
- universal set: {A,B,C,D,E}, 
- S1 = {A,D}, S2 = {C}, S3={B,D,E}, S4={A,C,D}

Element S1 S2 S3 S4

A 1 0 0 1

B 0 0 1 0

C 0 1 0 1

D 1 0 1 1

E 0 0 1 0

documents

shingles



10

DATABASE
SYSTEMS

GROUP

Text Processing

Big Data Management and Analytics

Similarity-Preserving Summaries of Sets

Minhashing

Idea: To minhash a set represented by a column of the characterisitic matrix, pick 
a permutation of the rows. The value of the minhash is the number of the first row, in 
the permutated order, with 	 	1

Example:
Suppose the order of rows ‚beadc‘ 

- h(S1) = A
- h(S2) = C
- h(S3) = B
- h(S4) = A

Element S1 S2 S3 S4

B 0 0 1 0

E 0 0 1 0

A 1 0 0 1

D 1 0 1 1

C 0 1 0 1
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Similarity-Preserving Summaries of Sets

Minhashing and Jaccard Similarity
The probability that the minhash function for a random permutation of rows
produces the same value for two sets equals the Jaccard similarity of those sets

Three different classes of similarity between sets (documents)
- Type X rows have 1 in both cols
- Type Y rows have 1 in one of the columns
- Type Z rows have 0 in both rows

Example
Considering the cols of S1 and S3:
The probability that h(S1) = h(S3) is given by:

1, 3 	

(Note that x is the size of 1 ∩ 2 and (x+y) is the size of 1 ∪ 2)

Element S1 S2 S3 S4

B 0 0 1 0

E 0 0 1 0

A 1 0 0 1

D 1 0 1 1

C 0 1 0 1
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Similarity-Preserving Summaries of Sets

Minhash Signatures
- Pick a random number of permutations of the rows
- Vector , , … , represents the minhash signature for
- Put the specific vectors together in a matrix, forms the signature matrix
- Note that the signature matrix has the same number of columns as input matrix

but only rows

How to compute minhash signatures:
1. Compute , , … ,
2. For each row r: For each column c do the following:

(a) if has 0 in row , do nothing
(b) if 	has 1 in row then for each 	 	1, 2, … , 	 set

, 	 	min	 , 	,

 Signature matrix allows to estimate the Jaccard similarities of the underlying sets!
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Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : 1 	 	5 and 	 3 1 mod 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

initialization

1st row
Check Sig for S1 and S4:

, 	 	min	 , 	,

S1: ∞,
∞,

S4: ∞,
∞,
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Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : 	 1	 	5 and 	 3 1 mod 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

initialization

2nd row
Check Sig for S3:

, 	 	min	 , 	,

S3: ∞,
∞,
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Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : 	 1 	5 and 3 1 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

4. s1 s2 s3 s4

h1 1 3 2 1

h2 1 2 4 1

initialization

3rd row
Check Sig for S2 and S4:

, 	 	min	 , 	,

S2: ∞,
∞,

S4: min 1,3 1
min 1,2 1
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Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : 	 1 	5 and 3 1 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

4. s1 s2 s3 s4

h1 1 3 2 1

h2 1 2 4 1

5. s1 s2 s3 s4

h1 1 3 2 1

h2 0 2 0 0

initialization

4th row
Check Sig for S1,S3,S4:

, 	 	min	 , 	,

S1: min 1,4 1
,

S3: min 2,4 2
,

S4: min 1,4 1
,
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Similarity-Preserving Summaries of Sets

Minhash Signatures - Example
- Suppose two hash functions : 	 1 	5 and 3 1 5

Element S1 S2 S3 S4 h1(x) h2(x)

0 1 0 0 1 1 1

1 0 0 1 0 2 4

2 0 1 0 1 3 2

3 1 0 1 1 4 0

4 0 0 1 0 0 3

1. s1 s2 s3 s4

h1 ∞ ∞ ∞ ∞

h2 ∞ ∞ ∞ ∞

2. s1 s2 s3 s4

h1 1 ∞ ∞ 1

h2 1 ∞ ∞ 1

3. s1 s2 s3 s4

h1 1 ∞ 2 1

h2 1 ∞ 4 1

4. s1 s2 s3 s4

h1 1 3 2 1

h2 1 2 4 1

5. s1 s2 s3 s4

h1 1 3 2 1

h2 0 2 0 1

6. s1 s2 s3 s4

h1 1 3 0 1

h2 0 2 0 0

initialization

5th row
Check Sig for S3:

, 	 	min	 , 	,

S3: ,
min 0,3 0
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Text Processing
- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data
- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR
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Modeling data as matrices

Matrices often arise with data:
- objects (documents, images, web pages, time series…)

- each with features

 Can be represented by an 	 	 	matrix

≔

…
…

⋮ ⋮ ⋱ ⋮
…

values at time t, 

i‐th series, 

doc1 Two for wine and wine for two

doc2 Wine for me and wine for you

doc3 You for me and me for you

	 ≔
2 2 0 0
0 2 1 1
0 0 2 2

Tw
o

w
ine

M
e

you

Doc1

Doc2

Doc3

(filter ‚for‘, ‚and‘ as stopwords )

High Dimensionality Data
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Why reduce Dimensions?

• Discover hidden correlations
• Remove redundant and noisy features
• Interpretation and visualization
• Easier storage and processing of the data

d=3 d=2

Axes of k‐dimensional 
subspace are effective
representation of the
data

High Dimensionality Data
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Outline

Text Processing
- Motivation
- Shingling of Documents
- Similarity-Preserving Summaries of Sets

High Dimensionality Data
- Motivation
- Principal Component Analysis
- Singular Value Decomposition
- CUR
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PCA Formulation

Goal of PCA: find a lower-dimensional representation of 
raw data

• X is 	 	 	(raw data)
• is 	 	 (reduces representation, as PCA ‘scores’)
• P is 	 	 (columns are principal components)
• Variance constraints

P
XZ
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PCA Formulation – Recall definition of Variance and Covariance

• 	 ∈ 	 	 	 : matrix of raw data
• : -th datapoint
• : mean

Variance: Measure of the spread of the data: 

Var X 	
1
	

Covariance: Measure of how much two random variables vary together (zero mean assumption): 

,
1

Covariance Matrix: Variance of all features and the pairwise correlations between them
(zero mean assumption):

Σ
⋯ ,

⋮ ⋱ ⋮
, ⋯

1
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PCA Formulation

Goal of PCA: find a lower-dimensional representation of 
raw data

• X is 	 	 	(raw data)
• is 	 	 (reduces representation, PCA ‘scores’)
• P is 	 	 (columns are k principal components)
• Variance constraints

• Q: Which constraints in reduced representation?
• No feature correlation, i.e. all off-diagonals in are zero 
 avoids redundancy

• Rank-ordered features by variance
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PCA Solution

All matrices have an eigendecomposition:

• 	 	 	(eigendecomposition)

• 	is 	 	 (diagonals are sorted eigenvalues, off-diagonals are zero)

• is 	 	 	(columns are eigenvectors, sorted by their associated eigenvalues)

The d eigenvectors are orthonormal directions of max variance
• Associated eigenvalues equal variance in these directions
• 1st eigenvector is direction of max variance (variance is )
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PCA - Which k<d to choose for dimensional reduction?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Analysis: Capture ‚most‘ variance in the data
• As eigenvalues are sorted variances in the directions specified by

eigenvectors, we can choose a fraction of retained variance:

∑
∑

E.g. choose k such that we retain 95% of
the variance
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Excursus: Eigenvectors and eigenvalues

Definition of the algebraic eigenvalue problem: 

Let A be a square 	 	 matrix. If there exists a real scalar and a 	 	1
vector 	 0, such that:

	 ,

then is called an eigenvalue of A and v is the associated eigenvector. 

How to find eigenvalues / eigenvectors of A?
• Solving the equation: det 	 	 	 	Ι 0		yields the eigenvalues
• For each eigenvalue , we find its eigenvector by solving the system of

equations 	 	 	 	 0
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Excursus: Eigenvectors and eigenvalues

Example: 
2 3
2 1

	 	 ∗ 2 3
2 1 	 	 1 0

0 1 =  2 3
2 1

det 	 	 	 ∗ 	 Ι 2 1 6 	 	 3 	 4 1 ∗ 4

 Largest eigenvalue (in magnitude) is 4, smallest eigenvalue 1

	 	 	 ∗ 	 Ι 2 3
2 3 	 	 0 		⇒ 		 	 32

	 	 	 ∗ 	 Ι 3 3
2 2 	 	 0 								⇒ 		 	 1

1
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PCA Solution

Computation

• Treat a set of tuples as a matrix M
• Find eingevectors for or

• Eigenvectors can be thought of a rotation in high-dimensional space
• Principal eigenvector yields the axis along which the variance of the

data is maximizied

 High-dimensional data can be replaced by its projection
onto the most important axes
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PCA Example

	

1 2
2 1
3 4
4 3

⇒ 	 	 30 28
28 30

 Eigenvalues: solving det 0 yields 58, 2

 Eigenvectors: solving 	 yields 	 1/ 2 1/ 2
1/ 2 1/ 2

 Projection of data on principal component by using first columns of :

	 /
/

	

/
/
/
/

Projection of 2d points
onto a one‐dimensional 
space
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Singular Value Decomposition (SVD) - Generalization of the
eigenvalue decomposition

Let be a data matrix and let k be its rank. We can
decompose into matrices , Σ, 	as follows:

																																 																												 																													
, … ,
⋮ ⋱ ⋮
, … ,

	
, … ,
⋮ ⋱ ⋮
, … ,

	∗ 	
⋯ 0

⋮ ⋱ ⋮
0 ⋯

	∗ 	
, ⋯ ,
⋮ ⋱ ⋮
, ⋯ ,

• X (Input data matrix) is a 	 	 	matrix (e.g. n customers, d products)
• U (Left singular vectors) is a 	 	 column-orthonormal matrix
• (Singular values) is a diagonal 	 	 with the elements being the singular values of X
• V (Right singular vecors) is a 	 	 column-orthonormal matrix
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Singular Value Decomposition (SVD) 

Computing SVD of a Matrix

Connected to eingevalues of matrices and
	 	 	 	 	 	 	 	 	 	

 Multiplying each side with V:
	 	

 Same algorithm that computes the eigenpairs for gives us matrix
for SVD

 Square root of singular values gives us the eigenvalues for
 can be found by the same procedure as , just with X

Remember the
Eigenwert-Problem:
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Singular Value Decomposition (SVD) 

How to reduce the dimensions?

Let X 	Σ	 (with rank(A) = r) and Y 	 	 , with 	 ∈ 	 	 	 where
	 1	, … , 	 else 0

, ⋯ ,
⋮ ⋱ ⋮
, ⋯ ,

	
, ⋯ , ,
⋮ ⋱ ⋮ ⋮
, ⋯ , ,

	

0 ⋯ ⋯
0 ⋱ ⋮ ⋮
⋮ ⋯ ⋮
⋮ … …

, ⋯ ,
⋮ ⋱ ⋮
, ⋯ ,
, … ,

 New matrix Y is a best rank-k approximation to X
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Singular Value Decomposition (SVD) – Example

Ratings of movies by users

M
atrix

Alien

Star W
ars

C
assablanca

Titanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2

Let A be a mxn matrix, and let r be the rank of A

Here: 
• a rank‐2 matrix representing ratings of movies by users
• 2 underlying concepts: science‐fiction + romance

Source: http://infolab.stanford.edu/~ullman/mmds/ch11.pdf
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Singular Value Decomposition (SVD) – Example

Ratings of movies by users - SVD

1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

	

.14

.42

.56

.70
0
0
0

0
0
0
0
.6
.75
.30

  	 ∗ 12.4 0
0 9.5 	∗ .58 .58 .58 0 0

0 				0 					0 .71 .71

															 							 										 ∗ 							Σ									 ∗ 									

Connects people
to ‚concepts‘

Relates movies
to concepts

‚strength‘ of
each concept

Raw data of user
‐movie‐ratings
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Singular Value Decomposition (SVD) – Example

Ratings of movies by users - SVD Interpretation

1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 0 0 4 4
0 0 0 5 5
0 0 0 2 2

	

.14

.42

.56

.70
0
0
0

0
0
0
0
.6
.75
.30

  	 ∗ 12.4 0
0 9.5 	∗ .58 .58 .58 0 0

0 				0 					0 .71 .71

Sci‐Fi
concept

romance
concept

Data provides more
Information about
the sci-fi genre and
the people who like 
it

First three movies (Matrix, Alien, Star 
Wars) are assigned exclusively to sci-fi
genre, whereas the other two belong to
the romance ‚concept‘

People‘s preferences
to specific concepts
(e.g. Joe exclusively
likes sci-fi movies but 
rates them low)

Joe
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SVD and low-rank approximations

Summary

Basic SVD Theorem: Let A be an m x n matrix with rank p 
- Matrix A can be expressed as 	 	
- Truncate SVD of yields ‘best’ rank-k approximation  given by 

	 	 , with 

Properties of truncated SVD:
- Often used in data analysis via PCA
- Problematic w.r.t sparsity, interpretability, etc.
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Problems with SVD / Eigen-analysis

Problems: arise since structure in the data is not respected by 
mathematical operations on the data

Question: Is there a ‘better’ low-rank matrix approximations in 
the sense of … 

- … structural properties for certain application
- … respecting relevant structure
- … interpretability and informing intuition

 Alternative: CX and CUR matrix decompositions
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CX and CUR matrix decompositions

Definition CX : A CX decomposition is a low-rank approximation 
explicitly expressed in terms of a small number of columns of A

Definition CUR : A CUR matrix decomposition is a low-rank 
approximation explicitly expressed in terms of a small number of columns 
and rows of A

U RCA ∗ ∗
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CUR Decomposition

- In large-data applications the raw data matrix M tend to be 
very sparse (e.g. matrix of customers/products , movie 
recommendation systems…)

- Problem with SVD : 
- Even if M is sparse, the SVD yields two dense matrices U and V 

- Idea of CUR Decomposition:
- By sampling a sparse Matrix M, we create two sparse matrices C 

(‘columns’) and R (‘rows’)
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CUR Definition

Input: let be a 	 	 	matrix

1.Step:
- Choose a number of ‘concepts’ (c.f. rank of matrix)

- Perform biased Sampling of cols from and create a 	 	 	matrix 
- Perform biased Sampling of rows from and create a 	 	 	matrix 

2.Step:
- Construct from and :

- Create a 	 	 matrix by the intersection of the chosen cols from and 
rows from 

- Apply SVD on 	 	
- Compute , the moore-penrose pseudoinverse of Σ
- Compute 
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CUR – how to sample rows and cols from M?

Sample columns for C:

Input: matrix ∈ 	 	 	 , sample size
Output: 	 ∈ 	 	 	

1.  For x = 1 : n do
2. P(x) = ∑ , / 
3. For y = 1 : r do
4. Pick 	 ∈ 	1: 	 based on Prob(x)

5. C( : , y) = M( : , z) / 	 ∗

(sampling of R for rows analogous)

Frobenius‐Norm:

	 ,
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CUR Definition

Example - Sampling

Sample columns: 

, , , 	 1 3 4 5 51

, , 	 4 5 2 45

∶ 	 243

 0.210

 0.185

M
atrix

Alien

Star W
ars

C
assablanca

Titanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2
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CUR Definition

Example - Sampling

M
atrix

Alien

Star W
ars

C
assablanca

Titanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2

Sample columns: 
• Let r = 2
• Randomly choosen columns, e.g. Star Wars + Cassablanca

1,3,4,5,0,0,0
1
∗

1,3,4,5,0,0,0
1

2 ∗ 0.210
1.54, 4.63, 6.17, 7.72, 0, 0,0

0,0,0,0,4,5,2
1
∗

0,0,0,0,4,5,2
1

2 ∗ 0.185
0, 0, 0, 0, 6.58, 8.22, 3.29

=>  	

1.54 0
4.63 0
6.17 0
7.72 0
0 6.58
0 8.22
0 3.29

R is constructed analogous
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CUR Definition

Input: let be a 	 	 	matrix

1.Step:
- Choose a number of ‘concepts’ (c.f. rank of matrix)

- Perform biased Sampling of cols from and create a 	 	 	matrix 
- Perform biased Sampling of rows from and create a 	 	 	matrix 

2.Step:
- Construct from and :

- Create a 	 	 matrix by the intersection of the chosen cols from and 
rows from 

- Apply SVD on 	 	
- Compute , the moore-penrose pseudoinverse of Σ
- Compute 
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CUR Definition

Example – Calculating 

M
atrix

Alien

Star W
ars

C
assablanca

Titanic

Joe 1 1 1 0 0

Jim 3 3 3 0 0

John 4 4 4 0 0

Jack 5 5 5 0 0

Jill 0 0 0 4 4

Jenny 0 0 0 5 5

Jane 0 0 0 2 2

Suppose  (Star Wars, Cassablance) and (Jenny, Jack)

 as intersection of cols from and rows from :

	 0 5
5 0

 SVD applied on  :

0 5
5 0 	Σ	 	 0 1

1 0
5 0
0 5

1 0
0 1

 Pseudo‐Inverse of Σ (replace diagonal entries with their numerical inverse)

Σ 	 1/5 0
0 1/5

 Compute

	 Σ 1 0
0 1

1/5 0
0 1/5

0 1
1 0

0 1/25
1/25 0

Ensure the
correct order!
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