Chapter 4:

SPARK

Big Data Management and Analytics 167

Spark becomes new standard for the MR applications:

* Logistic regression in Hadoop and Spark:

0.9

— 120 7110
N
@ 390
.—E 50 ¥ Hadoop
=
£ B Spark
c 30
T
0

* Cloudera replaces classic MR framework with Spark
* |IBM puts 3500 Researches to work on Spark related projects

Most of the Algorithms require a chain of MR steps:

* Tedious to program
* Writes to disk and reads from disk between steps are

expensive

HDFS HDFS HDFS HDFS

rteration 2

_IKeeps data between operations in-memory

/Lot of convenience functions (e.q. filter, join)

INo restrictions for the operations order from the framework
(not just Map->Reduce)

ISpark program is a pipeline of operations on distributed
datasets (RDD)

JAPI: Java, Scala, Python, R

"IRead-only collection of objects

"JPartitioned across machines
_JEnables operations on partitions in parallel

_ICreation:
"IParallelizing a collection
‘1Data from files (e.g. HDFS)
_1As result of transformation of another RDD

In [25]: numbers=sc.parallelize([1,2,3,4,5,6,7,8,9,10])

In [26]: numbers
Out[26]: ParallelCollectionRDD[21] at parallelize at PythonRDD.scala:391

I Number of partitions determines parallelism level

1 Can be cached in memory between operations

1 Graph based representation (Lineage)

IFault-Tolerant
[1ln case of machine failure RDD can be reconstructed

ITwo types of operations:
I Transformations (lazily evaluated)
"JActions (trigger transformations)

[data Transformations

1Transformations

| Recipe how the new dataset from the existing one is

generated
"I Lazy evaluated

1 Organized in Directed Acyclic Graph (DAG)

I The required calculations are
optimized

| For the execution DAG
Scheduler defines stages

| Each stage comprises of
tasks based on a particular
data partitioning.

Example

Stage 117

Stage 118

Spark Driver
Program

stage
master
DAG
Scheduler
tasks
/ Workers
Worker 1 Worker 2 Worker 3
e " - Ty - Ty
RDDBlock RDDBlock RDDBlock
s v e " e "
" T i Ty i Ty
RDDElock RDDEBlock RDDEBlock
o i b & b &
' " ' Ty ' Ty
RDDBlock RDDBlock RDDBlock
e >
o

JNarrow dependency
| Each partition of the new RDD depends on partitions
located on the same worker (transformation Is executed
locally on the workers)

IWide dependency Narrow Dependencies: Wide Dependencies:
] New partition depends [

on partitions on
several workers map, filter
(shuffle necessary)

x

L.'

groupByKey

join with inputs
co-partitioned

CLI(T)

join with inputs not
co-partitioned

union

_l intern map and reduce tasks to organize and aggregate data
| Expensive
"1 In memory data structures to organize data consume lot
of memory => disk 1/0 (shuffle spill) + garbage collection
| Lot of intermediate files on disk (for RDD reconstruction
In case of failure) => garbage collection
| Data serialization
I Network 1/0
] Reduce data amount to be transferred in the shuffle phase
by preaggregation

In [17]: data = sc.parallelize(list('dfasdfasdfasdfasdgafsgasfgasfgafgasfdgafgafafga'))

In [18]: data.map(lambda letter: (letter, 1))
... «reduceByKey(lambda f_count, s_count:
.saai =COllect()

out[iel i X g*, 8); 17" 2 (Y&, 13),: ("5 B); ('d",

action transformations

n [20]: data.map(lambda
\groupByKey ()\
.mapValues(lambda count_list:sum(count_list))\
.collect()

Qut([2e]: [('g', 8), ('f', 12), ('a', 13), ('s', 8), ('d', 6)]

Stage 14 Stage 15

/

=

DATABASE
SYSTEMS
GROUP

Shuffle {

Shuffle reduceByKey

(a, 1)
(@, 2) — (a, 6)

(CH))

Big Data Management and Analytics

\

(b, 1)
(b, 2) = (b, 6)
(b, 3)

179

=

DATABASE
SYSTEMS
GROUP

Shuffle {

Shuffle groupByKey

(a, 1)

Big Data Management and Analytics

T~

180

] Precomputed RDDs are reused

map

E: -
[:
Stage 2 .

- S S R NS B B RSN BN e e e e e e e —
T o o e o e e e e e e e e e s s s s E

\
~

-

B was computed and is reused, stage 1 is
skipped

) Computed RDD are held in memory as deserialized Java
objects

1 Old data partitions are dropped in least-recently-used
fashion to free memory. Discarded RDD is recomputed if it is

needed again.

1 To advise Spark to keep RDD in memory call cache() or
persist() operations on it

1 RDD can be persisted differently by passing argument to
persist function (in python persisted objects are always
serialized):

1 As deserialized java objects in memory (default)

1 As deserialized java objects in memory and on disk
| Serialized java objects iIn memory

| Serialized java objects iIn memory and on disk

1 Serialized on disk

1 Off Heap

] Off heap RDD persistence:
"1 RDDs are persisted outside of Java Heap

) Reduces the JVM Garbage Collection pauses

1 Tachyon
I Memory-centric distributed storage system

1 Lineage function
"I Enables data sharing between different jobs

] Data is safe even if computation crashes

I The driver program passes the functions to the cluster

 If passed function uses variables defined in driver
program, these are copied to each worker

In [201]: a = 3
In [202]: numbers = sc.parallelize([1,2,3,4])

In [203]: numbers.map(lambda n: n + a).collect()
Out[203]: [4, 5, 6, 7]

JUpdates on these variables are not allowed

In [196]:

In [197]:

1 The necessary common data is broadcasted within each
stage

"1 Within the stage the data is serialized and is desirialized
before each task

| Broadcast variables are used to avoid multiple broadcasting
and de/serialization

"] Broadcast variable is shipped once and is cached
deserialized

IBroadcast variable should not be modified, but can be
recreated

| Example broadcast variable:

In [219]:
In [220]:
In [221]:

In [222]:
Out[222]:

In [223]:

In [224]:
Out[224]:

In [225]:

In [226]:
Out[226]:

dict = {'dog" 'hund', 'he'’ 'er', 'weather' 'wetter',

broadcasted_dict = sc.broadcast(dict)
data = sc.parallelize(['weather', 'is', 'good'])

data.map(lambda word: broadcasted_dict.value[word]).collect()
['wetter', 'ist', 'qut'l]

dict['good']='sehr gut'

data.map(lambda word: broadcasted_dict.valuel[word]).collect()
['wetter', 'ist', 'gut']

broadcasted_dict = sc.broadcast(dict)

data.map(lambda word: broadcasted_dict.value[word]).collect()
['wetter', 'ist', 'sehr gut'l]

lisl

1 Accumulators are only updatable shared variables in Spark

] Assoclative add operation on accumulator is allowed
1 Own add operation for new types are allowed

1 Tasks can update Accumulator value, but only driver
program can read it

] Accumulator update is applied when action Is executed
] Task updates accumulator each time action is called

| Restarted tasks update accumulator only once

] Accumulator example:

In [257]: accum = sc.accumulator(Q)

In [258]: data = sc.parallelize([1,2,3,4])

In [259]:

def add_to_acc(acc, to_add):

acc.add(to_add)
return to_add

In [260]:

In [261]:
Out[261]:

In [262]:
Out[262]:

In [263]:
Out[263]:

In [264]:
Out[264]:

In [265]:
Out[265]:

res = data.map(lambda n: add_to_acc(accum,n))

accum.value
0

res.collect()
[1, 2, 3, 4]

accum.value
10

res.count()
4

accum.value
20

1 Spark streaming
1 Objects from stream are processed in small groups
(batches)
"1 Similar to batch processing

) Spark SQL
1 Processing of structured data (SchemaRDD)
1 Data is stored in columns and is analyzed in SQL manner
1 Data is still RDD and can be processed by other Spark

frameworks
1 JDBC/ODBC interface

1 GraphX
I Distributed computations on Graphs

"1 Machine Learning Libraries
1 Mlib
1 H20 (Sparkling water)
"1 Keystone ML

=

oamamase| DOUTCES
SYSTEMS I_MU

GROUP

_http://www.datacenterknowledge.com/archives/2015/09/09/c
loudera-aims-to-replace-mapreduce-with-spark-as-default-
hadoop-framework/
http://spark.apache.org/images/logistic-regression.png
https://www-03.ibm.com/press/us/en/pressrelease/47107.wss
1Zaharia, Matei, et al. "Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster

computing." Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX
Association, 2012.
_Ihttp://de.slideshare.net/databricks/strata-sj-everyday-im-
shuffling-tips-for-writing-better-spark-programs?related=1

Big Data Management and Analytics 192

