Chapter 3:

Map Reduce / Hadoop / HDFS

Big Data Management and Analytics

97

Outline

* Distributed File Systems (re-visited)

 MapReduce
* Motivation
* Programming Model
 Example Applications

« Big Data in Apache™ Hadoop®
« HDFS

« MapReduce in Hadoop
 YARN

Outline

* Distributed File Systems (re-visited)

 MapReduce
* Motivation
* Programming Model
 Example Applications

— Today

\

J

« Big Data in Apache™ Hadoop®
« HDFS

« MapReduce in Hadoop
 YARN

— Next week

Distributed File Systems

- Difference to RDBMS
- Parallel Computing Architecture

Past
- most computing is done on a single processor:

- one main memory
- one cache
- one local disk, ...

New Challenges:
- Files must be stored redundantly:
- If one node fails, all of its files would be unavailable until
the node is replaced (see File Management)
- Computations must be divided into tasks:
- a task can be restarted without affecting other tasks (see
MapReduce)
- use of commodity hardware

- Drawbacks of RDBMS
- Database system are difficult to scale.
- Database systems are difficult to configure and maintain
- Diversification in available systems complicates its selection
- Peak provisioning leads to unnecessary costs

- Advantages of NoSQL systems:
- Elastic scaling
- Less administration
- Better economics
- Flexible data models

=

wmense| DIStributed File Systems

SYSTEMS
GROUP

Parallel computing architecture

- Referred as cluster computing
- Physical Organisation:
- compute nodes are stored on racks (8-64)
- nodes on a single rack connected by a network

= | 3] A Y g]

Switch

Racks of servers (and switches at the top), at Google’s
Mayes County, Oklahoma data center
[extremetech.com]

Nodes within a rack are connected by a
network, typically gigabit Ethernet

x
a
Pyl

Big Data Management and Analytics 103

Parallel computing architecture

Large-Scale File-System Organisation:

- Characteristics:

- files are several terabytes in size (Facebook’s daily logs: 60TB,;
1000 genomes project: 200TB; Google Web Index; 10+ PB)

- files are rarely updated

- Reads and appends are common

Exemplary distributed file systems:
- Google File System (GFS)
Hadoop Distributed File System (HDFS, by Apache)
CloudStore
HDF5
S3 (Amazon EC2)

Parallel computing architecture

- Large-Scale File-System Organisation:
- Organisation:
- files are divided into chunks (typically 16-64MB in size)
- chunks are replicated n times (i.e default in HDFS: n=3) at n

different nodes (optimally: replicas are located on different racks
optimising fault tolerance)

- how to find files?
- existence of a master node
- holds a meta-file (directory) about location of all copies of a file ->
all participants using the DFS know where copies are located

MapReduce

- Motivation
- Programming Model

- Recap Functional Programming
- Examples

=

smanl MapReduce 3

GROUP =&

Motivation: MapReduce - Comparison to Other Systems

MapReduce vs. RDBMS

MapReduce RDBMS

Data size Petabytes Gigabytes

Access Batch Interactive and Batch
Updates Write once, read many times Read & Write many times
Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear Non-linear

Big Data Management and Analytics 107

$ MapReduce

SYSTEMS
GROUP

Motivation: MapReduce - Comparison to Other Systems
MapReduce vs. Grid Computing

- Accessing large data volumes becomes a problem in High
performance computing (HPC), as the network bandwidth is the
bottleneck <-> Data Locality in MapReduce

- In HPC, programmers have to explicitly handle the data flow <->
MapReduce operates only in higher level, i.e. data flow is
implicit

- handling partial failures <-> MapReduce as a shared-nothing-
architecture (no dependence of tasks); detects failures and
reschedules missing operations

Big Data Management and Analytics 108

Motivation: Large Scale Data Processing

In General:

- MapReduce can be used to manage large-scale computations
In @ way that is tolerant of hardware faults

- System itself manages automatic parallelisation and
distribution, I/0 scheduling, coordination of tasks that are
implemented in map() and reduce() and copes with
unexpected system failures or stragglers

- several implementations: Google's internal implementation,
open-source implementation Hadoop (using HDFS), ...

Programming Model - General Processing

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:

map (in_key, in_value) -> list (out_key, intermediate_value)
‘Processes input key/value pair; one Map()-Call for every pair
‘Produces a set of intermediate pairs

reduce (out_key, list(intermediate_value)) -> list (out_value)
-combines all intermediate values for a particular key; one
Reduce()-call per unique key
-produces a set of merged output values (usually just one output
value)

Programming Model — Recap: Functional Programming

- MapReduce is inspired by similar primitives in LISP, SML,
Haskell and other languages

- The general idea of higher order functions (map and fold) In
functional programming (FP) languages are transferred in the
environment of MapReduce:

- map in MapReduce <->map in FP
- reduce in MapReduce <-> fold in FP

$ MapReduce N[

SYSTEMS

GROUP ’ .:_:.!E“:: 11)

Programming Model — Recap: Functional Programming

- MAP:

- 2 parameters: applies a function on each element of a list

- the type of the elements within the result list can differ from the type of
the input list

- the size of the result list remains the same

In Haskell:
map :: (a->b) -> [a] -> [b]
map f[] =]
map f (x:xs) =f x : map f xs
Example:

*Main> map (\x -> (x,1)) [“Big”,”Data”,”Management”,”and”,” Analysis”]
[(“Big”,1),(“Data”,1),("Management”,1),(“and”,1),(“Analysis”,1)]

Big Data Management and Analytics 112

Programming Model — Recap: Functional Programming

- FOLD:

- 3 parameters: traverse a list and apply a function f() to each element
plus an accumulator. f() returns the next accumulator value
- in functional programming: foldl and foldr

In Haskell (analog foldr): foldl :: (b->a->b) -> b -> [a] -> b
foldl f acc [] = acc
foldl f acc (x:xs) = fold f (f acc x) xs

Example:

*Main> foldl (\acc (key,value) -> acc + value) 0 [(“Big”, 1), (“Big”, 1), (“Big”,1)]
3

Programming Model - General Processing of MapReduce

- 1. Chunks from a DFS are attached to Map tasks turning each
chunk into a sequence of key-value pairs.

- 2. key-value pairs are collected by a master controller and
sorted by key. The keys are divided among all Reduce tasks.

- 3. Reduce tasks work on each key separately and combine all
the values associated with a specific key.

Programming Model - High-level MapReduce diagram

Programming Model - High-level MapReduce diagram

Programming Model - General Processing

- Programmer’s task: specify map() and reduce();

- MapReduce environment takes care of:

Partitioning the input data

Scheduling

Shuffle and Sort (performing the group-by-key step)
Handling machine failures and stragglers

Managing of required inter-machine communication

$ MapReduce

SYSTEMS
GROUP

Programming Model - General Processing

Partitioning the input data
- data files are divided into blocks (default in GFS/HDES: 64

MB) and replicas of each are stored on different nodes
- Master schedules map() tasks in close proximity to data

storage
- map() tasks are executed physically on the same machine where

one replica of an input file is storaged (or, at least on the same

rack -> communication via network switch)
- —> Goal: conserve network bandwidth (c.f Grid Computing)

-—> achieves to read input data at local disk speed, rather
than limiting read rate by rack switches

Big Data Management and Analytics 118

Programming Model - General Processing

Scheduling

- One master, many workers
- split input data into M map tasks
- reduce phase partitioned into R tasks
- tasks are assigned to workers dynamically

- Master assigns each map task to a free worker
- considers proximity of data to worker
- —> worker reads task input (optimal: from local disk)
- —> output: files containing intermediate (key,value)-pairs
sorted by key

- Master assigns each reduce task to a free worker
- worker reads intermediate (key, value)-pairs
- worker merges and applies reduce()-function for output

Programming Model - General Processing

Shuffle and Sort (performing the group-by-key step)

Input to every reducer Is sorted by key
Shuffle: sort and transfer the map outputs to the reducers
as inputs
Mappers need to separate output intended for different
reducers
Reducers need to collect their data from all(!) mappers

- keys at each reducer are processed in order

§ MapReduce

SYSTEMS

GROUP LMU“‘Q a0

Programming Model - General Processing

Shuffle and Sort (performing the group-by-key step)

Copy “Sort” Reduce
phase phase phase
map task sort. e reduce task

splll to disk
bufferin - o

mput
split

Other maps e > Other reduces

Quelle: Oreilly, Hadoop - The Definitive Guide 3rd Edition, May 2012
Big Data Management and Analytics 121

Programming Model - General Processing

Handling machine failures and stragglers
- General: master pings workers periodically to detect failures

- Map worker failure
- Map tasks completed or in-progress at worker are reset to idle
- all reduce workers will be notified about any re-execution

- Reduce worker failure
- only in-progress tasks at worker will be re-executed
- —> output stored in global FS
- Master failure
- master node is replicated itself. ‘Backup’ master recovers last

updated log files (metafile) and continues
- if no ‘backup” master -> MR task is aborted and client is notified

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Failures

Big Data Management and Analytics

Programming Model - General Processing

Handling machine failures and stragglers

- Stragglers

- slow workers lengthen the termination of a task

- close to completion, backup copies of the remaining in-progress
tasks are created

- Causes: hardware degradation, software misconfiguration, ...

- if a task is running slower than expected, another equivalent task
will be launched as backup -> speculative execution of tasks

- when a task completes successfully, any duplicate task are killed

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Stragglers

Big Data Management and Analytics

Programming Model - General Processing

Managing required inter-machine communication

- Task status (idle, in-progress, completed)

- ldle tasks get scheduled as workers become available

- In completion of a map task, the worker sends the location
and sizes of its intermediate files to the master

- Master pushes this info to reducers

- Fault tolerance: master pings workers periodically to detect
failures

$ MapReduce i
gt ‘ LMU

Programming Model - General Processing - Workflow

Workflow of MapReduce (as original implemented by Google):
1. Initiate the MapReduce environment on a cluster of machines
2. One Master, the rest are workers that are assigned tasks by the master
3. A map task reads the contents of an input split and passes them to the

MAP-function. The results are buffered in memory

4. The buffered (key,value)-pairs are written to local disk. The location of
these (intermediate) files are passed back to the master

5. A reduce worker who has been notified by the master, uses remote
procedure calls to read the buffered data.

6. Reduce worker iterates over the sorted intermediate (key,value)-pairs
and passes them to the REDUCE-function

—> On completion of all tasks, the master notifies the user program.

Big Data Management and Analytics 127

Programming Model - Low-level MapReduce diagram

User Application

=

< W fork
.--. * -Il.
(1) fgrk Master {q_furk

" (@assign (2)assign -
© map reduce

(B) write

intermediate files reduce phase output files
Input files Map phase (on local disks)

Example #1 WordCount

- Setting: text documents, e.qg. web server logs
- Task: count occurrence of distinct words appearing in the
Input file, e.g find popular URLs in server logs

Challenges:
- File is too large for to fit in a single machines’s memory

- parallel execution

—> Solution: Apply MapReduce

=

DATABASE
SYSTEMS
GROUP

MapReduce

Example #1 WordCount

- Goal: Count word occurrence in a set of documents

- Input: “Wer A sagt, muss auch B sagen! Wer B sagt, braucht
B nicht nochmal sagen!”

map (k1, v1) -> list (k2, v2)

map (String key, String value):
//key:document name
//value: content of document
for each word w in value do:
emitintermediate(w, “1")

reduce (k2, list(v2)) -> list(v2)

reduce (String key, Iterator values):
//key:a word
//values: a list of counts
int result =0;
for each v in values do:
result += parselnt(v);
emit(result.toString())

Big Data Management and Analytics

130

Example #1 WordCount

- In a parallel environment:
-worker: 2

Input

Wer A sagt
muss auch
B sagen!

Output

Wer B sagt
braucht B
nicht
nochmal
sagen.

Wer, 2

Al

sagt, 2
muss, 1
auch, 1
braucht, 1
B, 3

sagen, 2
nicht, 1
nochmal, 1

$ MapReduce

SYSTEMS
GROUP

Example #2 k-Means

Randomly initialize k centers:

4O = 40,

Classify: Assign each point j e {1,...,m}to nearest centre:

2/ ¢ arg min||u: — 2’|l

Recenter: Mibecomes centroid of its points:
(t+1) : 2
pi - ¢ argmin 3 ||p—27|[;

ko gizd=i

Big Data Management and Analytics

(a) Initialization

(0]
Agc' %e®
@® (9] e©
@@
o<
®e

(b) First Iteration

o m B
i B
‘éb: " m m®
0.;,
*e
(c) Convergence
A m N
A
452 ¥
L
&
«
*e

Example #2 k-Means - MapReduce - Scheme

Setup
-> load datapoints in HDFS
-> centroid seeds

=07

ITERATIVE -|:
N i
i {3 I
| |
| |
| |
| |
i l’ i Y i
: Mapper o Mapper o Mapper o !
i | => calculate proximity -> calculate proximity -> calculate proximity |
' | =» assign datapoints to | | -> assign datapoints to || -> assign datapoints to |
: closest centroid closest centroid closest centroid I
: ' I
| |
| |
| |
| |
| |
| |
| :
| delta in '
i Reducer coordinates
| -> calculate new centroids of centroids
[}
|
|
|
|
|
|
I

[Final set of centroids]

Example #2 k-Means - Classification Step As Map

Classify: Assign each point j € {1,...,m}to nearest center:

2} < arg min||u; — m-”'||§
i

Map:
Input:
- subset of d-dimensional objects of M = {z1,...,Zy, }in each mapper
- initial set of centroids p® =, ..., u¥
Output:

- list of objects assigned to nearest centroid. This list will later be
read by the reducer program

Example #2 k-Means - Classification Step As Map

Classify: Assign each point j e {1,...,m}to nearest center:

for all x_i in M do
bestCentroid <- null
minDist <- inf
for all cin C do
dist <- 12Dist(x, c)
if bestCentroid == null || dist < mindist then
minDist <- dist
bestCentroid <- ¢
endif
endfor
outputlist << (bestCentroid, x_1)
endfor
return outputlist

Example #2 k-Means - Recenter Step as Reduce

Recenter: g, becomes centroid of its points:
Y argmin 3 [|u - 2|3
B Gizd=i
Note: equivalent to averaging its points!

it ¥ 2 1

§rzd =i Jizd =i
Reduce:
Input:

- list of (key,value)-pairs, where key = bestCentroid and value = objects
assigned to this centroid

Output:

- (key,value), where key = oldcentroid and value = newBestCentroid,
which is the new centroid calculated for that bestCentroid

Example #2 k-Means - Recenter Step as Reduce

Recenter: g, becomes centroid of its points:
assignmentList <- outputlists // lists from mappers are merged together (shuffle)

for all (key,values) in assignmentList do
newCentroid, sumOfObjects, numOfObjects <- null
for all obj in values do
sumOfObjects += obj
numOfObjects ++
endfor
newCentroid <- (sumOfObjects / numOfObjects)
newCentroidList << (key, newCentroid)
endfor
return newCentroidList

