
Chapter 3:

Map Reduce / Hadoop / HDFS

Big Data Management and Analytics 97

98

DATABASE
SYSTEMS

GROUP

Overview

Big Data Management and Analytics

Outline

• Distributed File Systems (re-visited)

• MapReduce
• Motivation
• Programming Model
• Example Applications

• Big Data in Apache™ Hadoop®
• HDFS
• MapReduce in Hadoop
• YARN

99

DATABASE
SYSTEMS

GROUP

Overview

Big Data Management and Analytics

Outline

• Distributed File Systems (re-visited)

• MapReduce
• Motivation
• Programming Model
• Example Applications

• Big Data in Apache™ Hadoop®
• HDFS
• MapReduce in Hadoop
• YARN

Today

Next week

100

DATABASE
SYSTEMS

GROUP

Overview

Distributed File Systems

- Difference to RDBMS
- Parallel Computing Architecture

Big Data Management and Analytics

101

DATABASE
SYSTEMS

GROUP

Distributed File Systems

Past
- most computing is done on a single processor:

- one main memory
- one cache
- one local disk, …

New Challenges:
- Files must be stored redundantly:

- If one node fails, all of its files would be unavailable until
the node is replaced (see File Management)

- Computations must be divided into tasks:
- a task can be restarted without affecting other tasks (see

MapReduce)
- use of commodity hardware

Big Data Management and Analytics

102

DATABASE
SYSTEMS

GROUP

Distributed File Systems

- Drawbacks of RDBMS
- Database system are difficult to scale.
- Database systems are difficult to configure and maintain
- Diversification in available systems complicates its selection
- Peak provisioning leads to unnecessary costs

- Advantages of NoSQL systems:
- Elastic scaling
- Less administration
- Better economics
- Flexible data models

Big Data Management and Analytics

103

DATABASE
SYSTEMS

GROUP

Distributed File Systems

Parallel computing architecture

- Referred as cluster computing
- Physical Organisation:

- compute nodes are stored on racks (8-64)
- nodes on a single rack connected by a network

Big Data Management and Analytics

Switch

Nodes within a rack are connected by a
network, typically gigabit Ethernet

Rack Rack Rack Rack
Racks of servers (and switches at the top), at Google’s
Mayes County, Oklahoma data center
[extremetech.com]

104

DATABASE
SYSTEMS

GROUP

Distributed File Systems

Parallel computing architecture

Large-Scale File-System Organisation:
- Characteristics:

- files are several terabytes in size (Facebook’s daily logs: 60TB;
1000 genomes project: 200TB; Google Web Index; 10+ PB)

- files are rarely updated
- Reads and appends are common

Exemplary distributed file systems:
- Google File System (GFS)
- Hadoop Distributed File System (HDFS, by Apache)
- CloudStore
- HDF5
- S3 (Amazon EC2)
- …

Big Data Management and Analytics

105

DATABASE
SYSTEMS

GROUP

Distributed File Systems

Parallel computing architecture

- Large-Scale File-System Organisation:
- Organisation:

- files are divided into chunks (typically 16-64MB in size)
- chunks are replicated n times (i.e default in HDFS: n=3) at n

different nodes (optimally: replicas are located on different racks
optimising fault tolerance)

- how to find files?
- existence of a master node
- holds a meta-file (directory) about location of all copies of a file ->

all participants using the DFS know where copies are located

Big Data Management and Analytics

106

DATABASE
SYSTEMS

GROUP

Overview

MapReduce

- Motivation
- Programming Model

- Recap Functional Programming

- Examples

Big Data Management and Analytics

107

DATABASE
SYSTEMS

GROUP

MapReduce

Motivation: MapReduce - Comparison to Other Systems

MapReduce vs. RDBMS

Big Data Management and Analytics

MapReduce RDBMS

Data size Petabytes Gigabytes

Access Batch Interactive and Batch

Updates Write once, read many times Read & Write many times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear Non‐linear

108

DATABASE
SYSTEMS

GROUP

MapReduce

Motivation: MapReduce - Comparison to Other Systems

MapReduce vs. Grid Computing

- Accessing large data volumes becomes a problem in High
performance computing (HPC), as the network bandwidth is the
bottleneck <-> Data Locality in MapReduce

- in HPC, programmers have to explicitly handle the data flow <->
MapReduce operates only in higher level, i.e. data flow is
implicit

- handling partial failures <-> MapReduce as a shared-nothing-
architecture (no dependence of tasks); detects failures and
reschedules missing operations

Big Data Management and Analytics

109

DATABASE
SYSTEMS

GROUP

MapReduce

Motivation: Large Scale Data Processing

In General:

- MapReduce can be used to manage large-scale computations
in a way that is tolerant of hardware faults

- System itself manages automatic parallelisation and
distribution, I/O scheduling, coordination of tasks that are
implemented in map() and reduce() and copes with
unexpected system failures or stragglers

- several implementations: Google’s internal implementation,
open-source implementation Hadoop (using HDFS), …

Big Data Management and Analytics

110

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

- Input & Output: each a set of key/value pairs
- Programmer specifies two functions:

map (in_key, in_value) -> list (out_key, intermediate_value)
·Processes input key/value pair; one Map()-Call for every pair
·Produces a set of intermediate pairs

reduce (out_key, list(intermediate_value)) -> list (out_value)
·combines all intermediate values for a particular key; one
Reduce()-call per unique key
·produces a set of merged output values (usually just one output
value)

Big Data Management and Analytics

111

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model – Recap: Functional Programming

- MapReduce is inspired by similar primitives in LISP, SML,
Haskell and other languages

- The general idea of higher order functions (map and fold) in
functional programming (FP) languages are transferred in the
environment of MapReduce:
- map in MapReduce <-> map in FP
- reduce in MapReduce <-> fold in FP

Big Data Management and Analytics

112

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model – Recap: Functional Programming

- MAP:
- 2 parameters: applies a function on each element of a list
- the type of the elements within the result list can differ from the type of

the input list
- the size of the result list remains the same

In Haskell:

Example:

Big Data Management and Analytics

map :: (a‐>b) ‐> [a] ‐> [b]
map f [] = []
map f (x:xs) = f x : map f xs

*Main>map (\x ‐> (x,1)) [“Big”,”Data”,”Management”,”and”,”Analysis”]
[(“Big”,1),(“Data”,1),(”Management”,1),(“and”,1),(“Analysis”,1)]

113

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model – Recap: Functional Programming

- FOLD:
- 3 parameters: traverse a list and apply a function f() to each element

plus an accumulator. f() returns the next accumulator value
- in functional programming: foldl and foldr

In Haskell (analog foldr):

Example:

Big Data Management and Analytics

foldl :: (b‐>a‐>b) ‐> b ‐> [a] ‐> b
foldl f acc [] = acc
foldl f acc (x:xs) = fold f (f acc x) xs

*Main> foldl (\acc (key,value) ‐> acc + value) 0 [(“Big”, 1), (“Big”, 1), (“Big”,1)]
3

114

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing of MapReduce

- 1. Chunks from a DFS are attached to Map tasks turning each
chunk into a sequence of key-value pairs.

- 2. key-value pairs are collected by a master controller and
sorted by key. The keys are divided among all Reduce tasks.

- 3. Reduce tasks work on each key separately and combine all
the values associated with a specific key.

Big Data Management and Analytics

115

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - High-level MapReduce diagram

Big Data Management and Analytics

116

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - High-level MapReduce diagram

Big Data Management and Analytics

117

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

- Programmer’s task: specify map() and reduce();
- MapReduce environment takes care of:

- Partitioning the input data
- Scheduling
- Shuffle and Sort (performing the group-by-key step)
- Handling machine failures and stragglers
- Managing of required inter-machine communication

Big Data Management and Analytics

118

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Partitioning the input data
- data files are divided into blocks (default in GFS/HDFS: 64

MB) and replicas of each are stored on different nodes
- Master schedules map() tasks in close proximity to data

storage
- map() tasks are executed physically on the same machine where

one replica of an input file is storaged (or, at least on the same
rack -> communication via network switch)

- —> Goal: conserve network bandwidth (c.f Grid Computing)

·—> achieves to read input data at local disk speed, rather
than limiting read rate by rack switches

Big Data Management and Analytics

119

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Scheduling
- One master, many workers

- split input data into M map tasks
- reduce phase partitioned into R tasks
- tasks are assigned to workers dynamically

- Master assigns each map task to a free worker
- considers proximity of data to worker

- —> worker reads task input (optimal: from local disk)
- —> output: files containing intermediate (key,value)-pairs

sorted by key
- Master assigns each reduce task to a free worker

- worker reads intermediate (key, value)-pairs
- worker merges and applies reduce()-function for output

Big Data Management and Analytics

120

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Shuffle and Sort (performing the group-by-key step)

- input to every reducer is sorted by key
- Shuffle: sort and transfer the map outputs to the reducers

as inputs
- Mappers need to separate output intended for different

reducers
- Reducers need to collect their data from all(!) mappers

- keys at each reducer are processed in order

Big Data Management and Analytics

121

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Shuffle and Sort (performing the group-by-key step)

Big Data Management and Analytics

Quelle: Oreilly, Hadoop ‐ The Definitive Guide 3rd Edition, May 2012

122

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- General: master pings workers periodically to detect failures

- Map worker failure
- Map tasks completed or in-progress at worker are reset to idle
- all reduce workers will be notified about any re-execution

- Reduce worker failure
- only in-progress tasks at worker will be re-executed
- —> output stored in global FS

- Master failure
- master node is replicated itself. ‘Backup’ master recovers last

updated log files (metafile) and continues
- if no ‘backup’ master -> MR task is aborted and client is notified

Big Data Management and Analytics

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Failures

Big Data Management and Analytics

124

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Stragglers

- slow workers lengthen the termination of a task
- close to completion, backup copies of the remaining in-progress

tasks are created
- Causes: hardware degradation, software misconfiguration, …
- if a task is running slower than expected, another equivalent task

will be launched as backup -> speculative execution of tasks
- when a task completes successfully, any duplicate task are killed

Big Data Management and Analytics

MapReduce

Programming Model - General Processing

Handling machine failures and stragglers
- Stragglers

Big Data Management and Analytics

126

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing

Managing required inter-machine communication

- Task status (idle, in-progress, completed)
- Idle tasks get scheduled as workers become available
- In completion of a map task, the worker sends the location

and sizes of its intermediate files to the master
- Master pushes this info to reducers
- Fault tolerance: master pings workers periodically to detect

failures

Big Data Management and Analytics

127

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - General Processing - Workflow

Workflow of MapReduce (as original implemented by Google):
1. Initiate the MapReduce environment on a cluster of machines
2. One Master, the rest are workers that are assigned tasks by the master
3. A map task reads the contents of an input split and passes them to the

MAP-function. The results are buffered in memory
4. The buffered (key,value)-pairs are written to local disk. The location of

these (intermediate) files are passed back to the master
5. A reduce worker who has been notified by the master, uses remote

procedure calls to read the buffered data.
6. Reduce worker iterates over the sorted intermediate (key,value)-pairs

and passes them to the REDUCE-function

—> On completion of all tasks, the master notifies the user program.

Big Data Management and Analytics

128

DATABASE
SYSTEMS

GROUP

MapReduce

Programming Model - Low-level MapReduce diagram

Big Data Management and Analytics

129

DATABASE
SYSTEMS

GROUP

MapReduce

Example #1 WordCount

- Setting: text documents, e.g. web server logs
- Task: count occurrence of distinct words appearing in the

input file, e.g find popular URLs in server logs

Challenges:
- File is too large for to fit in a single machines’s memory
- parallel execution

—> Solution: Apply MapReduce

Big Data Management and Analytics

130

DATABASE
SYSTEMS

GROUP

MapReduce

Example #1 WordCount

- Goal: Count word occurrence in a set of documents
- Input: “Wer A sagt, muss auch B sagen! Wer B sagt, braucht

B nicht nochmal sagen!”

Big Data Management and Analytics

map (k1, v1) ‐> list (k2, v2) reduce (k2, list(v2)) ‐> list(v2)

map (String key, String value):
//key:document name
//value: content of document
for each word w in value do:

emitIntermediate(w, “1”)

reduce (String key, Iterator values):
//key:a word
//values: a list of counts
int result = 0;
for each v in values do:

result += parseInt(v);
emit(result.toString())

131

DATABASE
SYSTEMS

GROUP

MapReduce

Example #1 WordCount

· In a parallel environment:
·worker: 2

Big Data Management and Analytics

132

DATABASE
SYSTEMS

GROUP

MapReduce

Example #2 k-Means

Randomly initialize k centers:

Classify: Assign each point to nearest centre:

Recenter: becomes centroid of its points:

Big Data Management and Analytics

133

DATABASE
SYSTEMS

GROUP

MapReduce

Example #2 k-Means - MapReduce - Scheme

Big Data Management and Analytics

134

DATABASE
SYSTEMS

GROUP

MapReduce

Example #2 k-Means - Classification Step As Map

Classify: Assign each point to nearest center:

Map:
Input:

- subset of d-dimensional objects of in each mapper
- initial set of centroids

Output:
- list of objects assigned to nearest centroid. This list will later be

read by the reducer program

Big Data Management and Analytics

135

DATABASE
SYSTEMS

GROUP

MapReduce

Example #2 k-Means - Classification Step As Map

Classify: Assign each point to nearest center:

for all x_i in M do
bestCentroid <- null
minDist <- inf
for all c in C do

dist <- l2Dist(x, c)
if bestCentroid == null || dist < mindist then

minDist <- dist
bestCentroid <- c

endif
endfor
outputlist << (bestCentroid, x_i)

endfor
return outputlist

Big Data Management and Analytics

136

DATABASE
SYSTEMS

GROUP

MapReduce

Example #2 k-Means - Recenter Step as Reduce

Recenter: becomes centroid of its points:

Note: equivalent to averaging its points!

Reduce:
Input:

- list of (key,value)-pairs, where key = bestCentroid and value = objects
assigned to this centroid

Output:
- (key,value), where key = oldcentroid and value = newBestCentroid,

which is the new centroid calculated for that bestCentroid
Big Data Management and Analytics

137

DATABASE
SYSTEMS

GROUP

MapReduce

Example #2 k-Means - Recenter Step as Reduce

Recenter: becomes centroid of its points:

assignmentList <- outputlists // lists from mappers are merged together (shuffle)

for all (key,values) in assignmentList do
newCentroid, sumOfObjects, numOfObjects <- null
for all obj in values do

sumOfObjects += obj
numOfObjects ++

endfor
newCentroid <- (sumOfObjects / numOfObjects)
newCentroidList << (key, newCentroid)

endfor
return newCentroidList

Big Data Management and Analytics

