Ludwig-Maximilians-Universität München Institut für Informatik

Prof. Dr. Thomas Seidl Anna Beer, Florian Richter

Algorithmen und Datenstrukturen

SS 2018

Übungsblatt 9: Suchen

Tutorien: 12.06-18.06.2018

Aufgabe 9-1 *B-Bäume*

Gegeben sei ein Array mit folgenden Werten: A = [42, 16, 89, 49, 35, 45, 8]

- (a) Fügen sie die Werte des Array A in gegebener Reihenfolge in einen leeren B-Baum mit k = 1 ein.
- (b) Überlegen die sich einen Algorithmus zum einsortieren in einen B+-Baum und ordnen sie das Array A in einen leeren B+-Baum mit k = 1 ein.
- (c) Löschen sie die folgenden Werte aus dem B-Baum aus Aufgabenteil a): 16, 49, 89

Aufgabe 9-2 *Bitvektoren*

Gegeben ist wieder die Sammlung von Informatik-Fachbüchern:

Nummer	Titel	Autor	Jahr	Kürzel
0	Design Patterns	E. Gamma, et al.	1994	DP
1	Clean Code	Robert C. Martin	2008	CC
2	Make Your Own Neural Network	Tariq Rashid	2016	MNN
3	Agile Software Development	Robert C. Martin	2002	AgSD
4	Introduction to Algorithms	T. H. Cormen, et al.	1989	IA
5	Functional Thinking: Paradigm Over Syntax	Neal Ford	2014	FuT
6	Extreme Programming Explained: Embrace Change	Kent Beck	1999	ExPE
7	Algorithms for Reinforcement Learning	Csaba Szepesvari	2010	AlRL
8	The Software Craftsman	Robert C. Martin	2014	TheSC
9	Test Driven Development: By Example	Kent Beck	2002	TDD
10	Programming Pearls	Jon Bentley	1986	PP
11	Building Your Own Compiler with C++	Jim Holmes	1994	BYOC

Das Universum U soll im folgendem alle obigen B ücher enthalten. Ein Eintrag Bit[i] eines Bitvektors steht dafür, ob ein Buch mit Nummer i in einer gegebenen Menge enthalten ist.

Hinweis: Sie dürfen die Vektoren auch als Zeilenvektoren schreiben.

- (a) Geben Sie N an.
- (b) Geben Sie den Bitvektor an, der das Universum repr äsentiert. Wie viele Elemente (B ücher) enthält die Menge, die er repräsentiert.
- (c) Welcher Bitvektor repräsentiert folgende Menge an Büchern $M_c = \{AgSD, TDD, BYOC, IA, TheSC\}$?
- (d) Welcher Menge repräsentiert der Bitvektor $Bit(M_d) = (1, 0, 0, 1, 1, 1, 0, 0, 0, ^T \mathbb{P}, 0, 0)$

(e) Wie könnte ein effizienter Algorithmus aussehen, der mittels zweier Bitvektoren $Bit(M_1)$ und $Bit(M_2)$ die Schnittmenge und Vereinigung der Mengen, die sie repäsentieren (M_1 und M_2), berechnet und diese wieder als Bitvektor $Bit(M_{result})$ ausgibt? Geben Sie diesen Algorithmus möglichst formal korrekt in Pseudocode an. Wie groß ist die Laufzeit in O-Notation?