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The Reational Interval Tree’:

Manage Interval Data Efficiently
in Your Relational Database

Executive Summary

Modern database applications show a growing demand for efficient and dynamic mana-
gement of intervals, particularly for temporal and spatial data or for constraint handling.
Common approaches require the augmentation of index structures which, however, isnot
supported by existing relational database systems.

By design, the new Relational Interval Tree! employs built-in indexes on an as-they-are
basis and has alow implementation complexity. The relational database productsyou are
offering already support the efficient integration of the Relational Interval Tree. There-
fore, they can be easily provided with a sophisticated interval management that is dedi-
cated to meet the demands of todays customers.

K ey Benefits

» General applicability to all kinds of interval domains (e.g., temporal, spatial)
» Superior performance to competing interval management approaches

* Low implementation cost

* Minimum code maintenance effort

* Optimally scales to large amounts of data

» Supports dynamically growing data spaces

* No complicated parameterization

! Patent pending: EPO Application No. 00112031.0
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Abstract

M odern database applications show agrowing de-
mand for efficient and dynamic management of in-
tervals, particularly for temporal and spatial data

or for constraint handling. Common approaches
require the augmentation of index structures
which, however, is not supported by existing rela-
tional database systems. By design, the new Rela-
tional Interval Tree! (RI-tree) employs built-in
indexes on an as-they-are basis and is easy to im-
plement. Whereas the functionality and efficiency

of the RI-treeis supported by any off-the-shelf re-
lational DBMS, it is perfectly encapsulated by the
object-relational datamodel.

TheRI-treerequires O(n/b) disk blocksof sizebto
storenintervals, O(logyn) 1/0 operationsfor inser-

tion or deletion, and O(h - log,n + r/b) 1/Os for an
intersection query producingresults. The height

h of the virtual backbone tree corresponds to the
current expansion and granularity of the data space
but does not depend onAs demonstrated by our
experimental evaluation on an Oracle8i server,
competing dynamic interval access methods are
outperformed by factors of up to 42 for disk ac-
cesses and 4.9 for query response time.
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[HP 94]. Particularly for industrial or commercial applica-
tions, the integration into RDBMS or ORDBMS is essential.
The Relational Interval Tree! (RI-tree) is a new method
to efficiently support intersection queries, i.e. reporting all
intervals from the database that overlap a given query inter-
val. Rather than being a typical external memory data struc-
ture, the RI-tree follows a new paradigm in being ational
storage structure. The basic idea is to manage the data ob-
jects by common relational indexes rather than to access raw
disk blocks directly. While exploiting the availability, ro-
bustness and high performance of built-in index structures in
existing systems, the advantages for the Rl-tree are in detail:
« Built-in indexes are used on asthey-are basis without
any augmentation of the internal data structure. Thus, no
interface below the SQL level is required, and any arbi-
trary off-the-shelf RDBMS immediately supports the
technique.
A proper integration with existing RDBMS is an essen-
tial aspect for most industrial or commercial applica-
tions. By using built-in relational index structures, their
strong robustness, performance and integration into
transaction management (including recovery services
and concurrency control) is for free. Thus, a lot of imple-
mentation efforts and code maintenance is avoided by a
relational storage structure in contrast to typical external
memory solutions.

There is a growing demand for database applications thal The efficiency of the RI-tree is due to the logarithmic /O

handle temporal and spatial data. Intervals occur as transac-
tion time and valid time ranges in temporal databases
[SOL 94][Ram 97][BO 98], as line segments on a space-fill-

ing curve in spatial applications [FR 89] [BKK 99], as inac-

curate measurements with tolerances in engineering databas-
es, for hierarchical type systems in object-oriented databases

[KRVV 93] [Ram 97], or for handling interval and finite do-
main constraints in declarative systems [KS 91] [KRVV 93]
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complexity of the underlying relational system for one-
dimensional range queries on point data. Almost all
RDBMS qualify for this quite weak requirement since
they typically have implemented the popular B+-tree. By
virtualizing the backbone structure of the original main-
memory method and storing the intervals in relational in-
dexes, a high efficiency for the RI-tree is achieved.

* In addition to its efficient support by any off-the-shelf
RDBMS, the RI-Tree perfectly fits to the object-relational
facilities of modern DBMS including the Oracle8i Server
[Ora 99a], the Informix Universal Server [Inf 98] or the
IBM DB2 Universal Database [IBM 99]. These systems
support integrating the RI-Tree with the declarative SQL
level as well as with the relational query optimizer.

! Patent pending [KPS 00]




Internally, the RI-tree managesintervalsby tworelational TheTime Index of Elmasri, Wuu and Kim [EWK 90] is
indexes. Storing nintervals occupies O(n/b) disk pages, and an index structure for valid time intervals. A set of linearly
inserting or deleting an interval requires O(logyn) 1/0 oper- ordered indexing points is maintained by a B+-tree, and for
ations where b denotes the disk block sizeasin [MTT 00]. each point, a bucket of pointers refers to the associated set
For reporting ther intervals that intersect a given query in- of intervals. Since an interval may be registered with several
terval, O(h - log,n + r/b) 1/Os are required. The heighof  indexing points, the space requiremer®{s?) for n stored
the virtual backbone reflects the current expansion and gramtervals [HJ 96]. Due to this redundance, the time com-
ularity of the data space but does not dependend on the nupiexity isO(n) for insertion and deletion a@{n?) for inter-
bern of intervals. On top of a good analytical complexity, val intersection query processing [AT 95].

also the empirical performance is superior to competitors.  Thelnterval B-tree(IB-tree) of Ang and Tan [AT 95] has

The paper is organized as follows: Section 2 surveys raseen developed to overcome the weaknesses of the time in-
lated work for interval management in databases. Igjex. It can be regarded as an implementation of Edelsbrun-
Section 3, we introduce the structure of the new Relationa{er's interval tree [Ede 80] using an augmented B+-tree
Interval Tree, whereas the algorithms for query processingather than a binary tree. The original main memory model
are presented in Section 4. Section 5 discusses the integfgthus transformed to an efficient secondary storage struc-
tion into an ORDBMS. After an experimental evaluation inture while preserving the Optima| space and time Comp|ex-

Section 6, the paper is concluded by Section 7. ity. As a disadvantage that we avoid in our approach, the
complex three-fold structure of the interval tree is retained,
2 Related Work and a dedicated structure of its own is used for each level.

A variety of methods has been published concerning inteflore seriously, the augmentation is not supported by com-
val management in databases, most of them addressing tefiércial ORDBMS's.
poral applications. The following sections intentionally sur-  Thelnterval B+-tree(IB+-tree) of Bozkaya and Ozsoyo-
vey interval handling in general. Specialized work e.g. oglu[BO 98] is a secondary storage model of the interval tree
append-only structures for transaction time intervals i®f [CLR 90] that differs from Edelsbrunner’s interval tree
omitted due to lack of space. by the fact that it uses the lower bounds of the intervals as
. primary keys. As a result, queries referring to the upper
21 Main Memory Structur_es bounds of intervals such a®ets or after are not supported
In the context of computational geometry, several datge||, The I/0 complexity for insertions or deletions as well
structures that support 1D interval data have been devels for finding a single intersecting interval for a query is
oped [PS 93] [Sam 90a]. Among them Begment Tree of  (jog,n). Retrieving allr intersecting intervals, however,
Bentley, thePriority Search Tree of McCreight and thén- v resultin a scan of the internal nodes covered by the que-
terval Tree of Edelsbr_unner are the most_ popular. More 'ty range. Thus, the worst case time complexi®(iy rather
cent developments include theterval Sip List and the  than the minimun®(logn +r) which Edelsbrunner’s inter-
IBSTree of Hanson et al. [HJ 96]. val tree guarantees. The concept of time splits is introduced
As major limitation, the main memory resident datags g successful heuristics to avoid large fruitless scans.

structures do not meet the characteristics of secondary stQfyain, the augmentation is an obstacle for the integration
age. In a disk-oriented context, access is block-oriented ango commercial systems.

g?lyafg”la_ll sg?:,?]gs_ﬁf]:sctrnuccéure m&:f;&iﬁg Kméaglmem— TheTP-Index of Shen, Ooi and Lu [SOL 94] is based on
yatagientime. Py [ ] a transformation of intervals into a triangular 2D space. Du-

IS away to overcome the_ proble_m by _Comb”?'”g optlmal In'plicates are avoided and the index is well suited for append-
terval structures with efficient disk-oriented indexing tech-

. ; . ing intervals since th m row dynamicall
niques. Our approach follows this paradigm and, moreove g intervals since the data space may grow dynamically at

N fhe upper bound. The access method is highly specialized to
e e e o e s gested maping andanegaton o xsing OR-
ary storage structures DBMSs is not supported. A similar mapping organized by

' a grid file is presented in [LT 98].
2.2 Secondary Storage Structures The External Memory Interval Tree of Arge and Vitter
A variety of secondary storage structures for intervals hapV 96] is an externalization of Edelsbrunner’s interval tree
been presented in the literature [TCG+ 93] [MTT 00]. Sincewhere the fan-out of the backbone tree is increased from 2
they typically are based either on the augmentation of existe /b for disk blocks of sizb. The intervals are stored in
ing indexes or on the definition of new structures, most o§lab lists and multislab lists. The structure requdésgb)
them share the limited support for an integration into existpages fom intervals, supports insertions and deletions in
ing systems. When being committed to a commercial ORO(log,n) 1/0Os and require®(logy,n + r/b) I/Os to answer a
DBMS, the structures cannot be integrated as the built-in irstabbing query reportingesults, which is the optimal com-
dexes are not extensible by the user. plexity. Unfortunately, no experiments demonstrate the per-



formance and, again, theintegrationinto existing systemsis  level set too high, too much redundancy emerges due to
not supported. small fixed-sized tiles, whereas a low fixed level causes too

Beside originally one-dimensional interval index struc- ~ much overhead for scanning the large variable-sized tiles.
tures even multi-dimensional index structures can be em- Therefore, an inappropriate setting causes the response time
ployed for the task of managing 1D intervals. In general,  to degenerate vastly [Ora 97] [Ora 99b]. Unfortunately, the
however, spatial access methods such as GuttrRanée  fixed levelcan only be set at index creation time, and adapt-
[Gut 84] and its variants includinB*-tree [SRF 87] and ingitto changing data and query distributions requires bulk-
R*-tree [BKSS 90] may not behave well for one-dimen- loading the whole dataset anew. This major drawback is not
sional intervals. Particularly the long durations and higrshared by ouRI-Tree.
overlaps of intervals in many temporal applications induce TheInterval-Spatial Transformation (IST) of Goh et al.
severe performance problems [EWK 90] [GLOT 96]. Two[GLOT 96] is based on encoding intervals by space-filling
particular solutions are sketched in the following. curves called-, V- andH-ordering that map the boundary

The Segment R-tree (SR-tree) of Kolovson and Stone- points into a linear space. No redundancy is produced, and
braker [KS 91] is a combination of the main memory-basedpace complexity i©(n/b). Whereas the expansion of the
segment tree with the secondary storage-oriented R-tredata space at the upper bound is an explicit feature of the
The splitalgorithm cuts long intervals into spanning portionsnethod, the expansion at the lower bound which is support-
and remnant portions thus producing some redundance. Tled in our solution remains unclear. Unfortunately, no exper-
authors recommend to combine the SR-tree witkebeton imental performance results are reported in the paper. The
Indexthat performs a pre-partitioning of the data space in orHO complexity of the query algorithm linearly depends on
der to improve query processing performance. The SR-trabe resolution of the space whereas our method guarantees
performs similar to the R-tree, and particularly the skeletom logarithmic dependency on the resolution. A dynamic re-
version yields an improvement. Just as the IB-tree and IB+finement of the resolution is not supported by & A
tree are augmentations of the B+-tree, implementing theloser ook at the structure reveals a strong correspondence
SR-tree requires an adaption of the R-tree structure provided relational composite indexes. Aside from quantization as-
there exists any R-tree in the target DBMS at all. Another appects, the D-ordering is equivalent to a composite index on
proach that supposes a specialized multi-dimensional indeke interval boundsupper, lower), and the V-ordering cor-
structure is suggested by Fenk et al. [FMB 00]. responds to an index ohoger, upper). For intersection

. queries, however, these indexes reveal a poor query perfor-

2.3 Rdational Stqrage St.ructur% ] mance if the selectivity relies on the “wrong” bound, i.e. the
Very few methods immediately meet our core requiremengeondary attribute in the index. Thus, intersection queries
to use bU|It-!n index struc_tures the way they are rather th"?‘ﬁave aworst case I/0 complexity@(i/b). The H-ordering
to aug'me.nt mdgxes or to introduce new s'tru.ctures whose i@imulates an index onygper —lower, lower), thus particu-
tegration is typically not supported by existing RDBMS. 411y supporting queries referring to the interval length. The

TheWndow-List technique of Ramaswamy [Ram 97] is map21 approach of Nascimento and Dunham [ND 99] be-
a static solution for the interval management problem anggyes very similar to the IST while the composite index
employs built-in B+-trees. The optimal complexity of (jower, upper) is implemented by a single-column index. A
O(n/b) space an@(logyn +1/b) I/Os for stabbing queries is  static partitioning by the interval lengths is introduced, but

achieved. Unfortunately, updates do not seem to have nofktersection query processing still requids/b) 1/0s if the
trivial upper bounds, and adding as well as deleting arbitranyatapase contains many long intervals.

intervals can deteriorate the query efficiency of this struc-
ture toO(n/b). Despite the practicability of the approach, no24 Custom Access Methodsin ORDBM S
experimental results are demonstrated. Modern commercial ORDBMS such as the Informix Uni-
TheTilelndexapproach provided by the Oracle8i Spatialversal Server [Inf 98], the Oracle8i Server [Ora 99a] or the
Product [RS 99] is a relational implementation of the multi-IBM DB2 Universal Database [IBM 99] support the logical
dimensionalLinear Quadtree [Sam 90b]. Spatial objects embedding of custom indextypes into the database system.
are decomposed and indexed at a user-defined fixethough the developer may use an extensibility framework
quadtree level. Each resulting fixed-sized tile contains a s¢éb seamlessly bind a new access method to the query lan-
of variable-sized tiles as a fine-grained representation of thguage, optimizer and query processor, there is no applica-
covered geometry. Intersection queries are performed by dion program interface to the physical layer of the database
equijoin on the indexed fixed-sized tiles, followed by a seengine, e.g. to the block manager. In the absence of any gen-
quential scan on the corresponding variable-sized tileeralized search tree framework in the sense of [HNP 95], the
When applied to one-dimensional data, THeIndextech-  developers have the option to store their custom index struc-
nique maps an interval to a set of fixed-sized segments to Iere in external files. Of course, this technique allows excel-
stored in a built-in B+-tree. Finding a good fixed level forlent performance results, but as external files do not partic-
the expected data distribution is crucial, as with the fixedpate in the transaction management of the database server,



the developers have to implement and maintain their own
block manager including “industrial strength” concurrency
control and recovery services.

Alternatively storing the index as a single Large Object
(LOB) in the database also requires extensive implementa-
tion and maintenance efforts, particularly because the built-
in locking mechanism on entire LOBs is far too coarse in a
multi-user environment [BSSJ 99]. A natural way to avoid x
these technical problems is to exploit as much functionality F.gure 1: Three-fold structure of an interval tree.
of the database server as possible by mapping the index
structure to a fine granular relational schema organized by,
built-in access methods. We follow this approach in the
present paper and propose an efficient index structure for in-
terval data that is designed to operate as logical indextype on
top of the relational query language of the DBMS. The code
can be implemented and maintained with minimum effort,
Nevertheless our technique provides “industrial strength
stability and transaction semantics, while still showing
logarithmic worst case I/0O complexity for interval intersec-
tion queries and while demonstrating the best experimentaf-
ly measured performance compared to previous approach

Thesecondary andtertiary structure can be combined to

a relational representation that highly fits to the strength

of built-in composite indexes as provided already by an

RDBMS. As desired, the space complexitp{s/b) for

nintervals.

The secondary structure is mapped to arelational schema as

ollows: LetL(w) = {l, ..., n } denote the list of lower

ounds of the,, intervals that are registered at neddhe

ame information is represented by the set of tuples
w, 1), ..., (w, I, )} The union over all nodesyields a

relatlon hode Iower) Analogously, the listsU(w) =

. {ug,...,u, } of upper bounds correspond to

3 TheRelational Interval Tree {(w, uy), o (w, unw)} and yield a relationnpde, upper).

In this section, we introduce the ndRelational Interval Together, the relations exactly reflect the information of the

Tree, which efficiently implements Edelsbrunner’s interval secondary structure.

tree on top of any relational database system. Inan RDBMS, the two relationadde, lower) and fode,
. upper) are efficiently organized by built-in composite in-
3.1 Original Interval Tree Structure dexes. These indexes typically own a robust and highly

Edelsbrunner’s interval tree [Ede 80] [PS 93] is an optimatuned implementation, e.g. a B+-tree; they already obey the
data structure for intervals. Since the registered intervals ateansaction semantics and are hardly outperformed by user-
not decomposed as in the segment tree, no redundancydsfined structures. Key compression techniques avoid re-
produced and the space complexit@{®). The three-fold dundancy for equal node valuesSince the indexes only
structure is illustrated in Figure 1: The backbone tree or primanage the nonempty nodes, they already comprise the ter-
mary structure is a balanced binary search tree that organigary structure.

es the values of all bounding points of the intervals. Each of The resulting relational schema contains the attributes
the inner nodew is associated with two listgw) andU(w)  (node, lower, upper, id) and is supported by two composite
that form the secondary structutgw) andU(w) contain,  indexes fode, lower) and fode, upper). Thus, a given in-
respectively, sorted lists of the lower and upper bounds q&rval relation is prepared for the RI-tree by adding a single
the intervals that are associatedtén interval (, u) isreg-  attributenode and two indexes. Figure 2 presents the re-
istered at the highest node it overlaps, i.e. the first mode spective DDL statements in SQL. Alternatively, the artifi-
for whichl < w < uholds when descending the tree. The terial attributenode may be omitted from the base table and
tiary structure is an additional binary tree that supports fagincapsulated by index-organized tables for the two indexes.
range scans by linking the nodeswhose listd (w) and

U(w) are nonempty. CREATE TABLE Intervals(nodeint, lower int, upper int, idint);
CREATE INDEX lowerlndex ON Intervals (node, lower);
CREATE INDEX upperindex ON Intervals (node, upper);

3.2 Structure of the Relational Interval Tree

The basic idea of our technique relies on the following ob-=
servations:
« For many applications, th@imary structure does not

need to be materialized at all. First, the nonempty node33 Updatesin Relational Interval Trees
are linked by the tertiary structure as well. Second, eveWhereas the registered intervals are completely managed
dynamic data spaces can be managed without a physida} the relational schema, the remaining task of the primary
tree structure as we will show below. Only a few systemnstructure is to organize the data space in order to manage in-
parameters occupying(1l) space are required. sertions and query processing. The original interval tree is

Figure 2: SQL statementsto instantiate an RI-Tree.
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Figure 3: Fork node of an interval in the tree.

built on a static set of bounding pointsfor theintervals. Ina
dynamic context, however, intervals are inserted and del et-
ed whose actual bounding points are not known in advance.
Moreover, temporal applications require an ongoing expan-
sion of the data space. For thisreason, ageneral and adapt-
abletechniqueis required.

Our solutionisassimple as effective: Rather than materi-
dizing any set of nodes, the primary structure is managed
purely virtually. Thus, thebounding pointsof theintervalsare
not restricted to given values but the entirerange [ 1, 2"-1] is

INSERT INTO Intervals
VALUES (forkNode(:lower, :upper), :lower, :upper, :id);

Figure5: Insertion of an interval (lower, upper, id).

3.4 Dynamic Expansion of the Data Space

In the basic version, the data space is fixed to arange of
2"-1 values yielding a tree of height Whereas the 1/0
complexity for updates ®(log,n) and thus independent of
h, the CPU time complexity linearly grows with

We suggest a solution that combines various aspects:
First, the tree height is adjusted to the actual data distribu-
tion. Second, the data space may be expanded dynamically
at the upper bound; this requirement is typical for temporal
applications. On top of this, even expansions of the data
space at the lower bound are supported.

The tree height is affected by two parameters: The value of
the root node at which searches in the tree start, and the depth
down to which algorithms have to descend in the tree. In order
to control the minimum tree height, we introduce the system
parametersoot, offset, |eftRoot, rightRoot andminstep.

Root. Dynamically adapting the parameteot yields

supported for somb = 0. Moreover, no reorganization of two advantages: The tree height is kept minimal, and the
any structure is necessary when inserting or deleting intedata space may be expanded at its upper bound as new in-

vals.

In the basic version, the root node is set'td, 2nd the
treeistraversed recursively viabisection, i.e. using simple
integer arithmetics but consuming no 1/0 operations. Asal-
ready mentioned, an interval (I, u) is registered at the top-
most node w for which| < w < u holds, called the fork node
(Figure 3). As an extension of the original interval tree, in-
tervals may begin and end also at inner nodes rather than
only at leaves. Points p are represented by degenerate inter-
vals (p, p). A procedure to determine the fork node is pro-
vided in Figure 4. For computational reasons, the recursion
iscontrolled by adecreasing step width rather than the depth
inthetree.

FUNCTION int forkNode (int lower, int upper) {
int node = root;
for (int step = node/2; step >=1; step /= 2)
if (upper < node) node —= step;
elsif (node< lower) node += step;
else break;
return node;

}

Figure 4: Computing the fork node of an interval.

Once the fork node is computed, inserting the interval
into the relational indexes is efficiently performed by the
DBMSitself. Only asingle SQL statement needsto be exe-
cuted (Figure 5) which also holds for the deletion of anin-
terval. Todays RDBMS typically perform both operations
by O(log,n) I/0s on adatabase containing n intervals.

tervals arrive. A root value of'2s sufficient to manage in-
tervals with O<lower and upper <2™!, and h=
Oog,(max{upper}) Dis adjusted at every insertion without
affecting the existing entries, i.e.@(1).

Offset. The optimality of the root height clearly holds for
an actual data space starting at 1. The intervals, however,
may be located in a rangg [x,] with x; >> 1, i.e. far away
from the origin. The resulting tree heighflisg,(x,) Owhere-
as a height oflog,(xy —X;)Owould be sufficient for a data
range of lengthy —x;. By shifting the intervals such that 1
becomes the lower bound of the data space, the optimal root
heighth,,, = tog,(max{upper} — min{ lower}) Lis obtained.

The amount of shift is stored in the paramettset.

L eftRoot and RightRoot. Changing theffset parame-
ter would cause a recalculation of all node values stored in
the tree. To avoid such an unnecesgxryb) I/O effort, off-
set is fixed after having inserted the first interval. The inter-
val that leftmost begins in the data space, however, is not
guaranteed to arrive at first to be inserted. Therefore, the
space needs to be expanded at the lower bound as well as at
the upper bound.

In our solution, we use 0 as global root value and manage
a left and a right subtree for negative and positive node val-
ues, respectively. Instead of the single paranreter two
parameterteftRoot andrightRoot are maintained that man-
age the expansion of the data space at the lower bound and
at the upper bound independently.

Minstep. The parameteamninstep traces the lowest level
imn @t which insertions of intervals have taken place with
level 0 as the leaf level. Obviously, a query algorithm does
not need to descend deeper than to Ieyekince the sec-



ondary structures of all nodesin lower levelsare empty. An

estimation of i, is obtained from the interval lengths:
Lemma. An interval (I, u) is not registered below the
level i, = og,(u—1)0 i.e. the largest cardinalwith

is log,(m) + 1 withmgiven by the following formula where
the minimum value of 0.5 for minstep may occur:

m = max{ —leftRoot, rightRoot} / minstep

In terms of data characteristics, the tree height is deter-
2<u-l mined as follows: The range froftRoot to rightRoot re-
Proof. Assume an interval (I, u) registered at a level flects the expansion of the data space from hoindr} to

j < dog,(u— 1) Then there are two successive multiplesmax{upper} over all currently registered intervals, amih-

k-2 and k+1)-2 for whichl < k-2 < (k+1)-2 < u. Since ~ Stepindicates the granularity of the data space, i.. the small-
one of the multiples is also a multiple &f2the interval €St interval length, minjpper —lower}. We increase this

(I, u) had to be registered not lower than lgvdl which value by 1 to proper handle points which are represented by
contradicts the assumption degenerate intervals. Neverthelegsistep could be greater

. o . . . than min{upper — lower + 1} since even small intervals can
Figure 6 presents the final insertion procedure mcluquJe registered at high nodes, e.g. at the root node. In any case,

the update of the persistent tree parameters. Only the artifiyg (ree height does not depend on the number of intervals.

cial node value is shifted byffset; the lower and upper |n terms of the interval bounds, the tree heigl@(isg,m)
bounds of the intervals are stored without modification. ThQ\’herem Obeys the fo”owing Comp|exity:

parameterseftRoot andrightRoot are initially set to 0, and
minstep is initialized by infinity. The minimum value of 0.5
for minstep will not be stored and, thus, the implementation
by an integer works well.

m = O[max{ upper} —min{lower}
U min{ upper —lower + 1} U

4 Query Processing
Having presented the internal structure of the relational in-

PROCEDURE insertInterval (int lower, int upper, int id) {

}

/l'initialize offset and shift interval
if (offset = NULL) offset = lower;
int | = lower —offset, u = upper -offset;

/I update leftRoot and rightRoot
if (u<Oand | <= 2*eftRoot) leftRoot = —2/{log,(-)0
if (0<Iand u>=2*rightRoot) rightRoot = 2"{Tog,(u)JJ

/I descend the tree down to the fork node
int node, step;

if (u<0) node deftRoot;

elsif (0<1) node =rightRoot;

ese/* 0 is fork node */ node = 0;

for (step = abs(node/2); step 1; step /=2) {
if (u<node) node —= step;
elsif (node<1) node += step;
else /* fork reached */ break;

} /I now node is fork node

if (node != Oand step< minstep) minstep = step;

INSERT INTO Intervals VALUES (:node, :lower, :upper, :i

3.

Figure 6: Insertion of an interval and update of the tree

parametersffset, |eftRoot, rightRoot andminstep.

5 Analysisof the Tree Height

terval tree in the preceding section, we now introduce the al-
gorithms for query processing.

4.1 Original Intersection Search

Let us shortly review the algorithm for intersection query
processing in the original interval tree. For any query interval
(lower, upper), the primary structure is descended as follows:

(1) Descend from the root node down to the node preced-
ing the fork node of the query interval. Each neden this
path lies either to the left or to the right of the query interval.
Supposen < lower, then intervalsl( u) registered atv in-
tersect the query interval exactly ldwer <u. To report
theser,, intervals, the sorted lidt(w) of upper bounds is
scanned it®(r,,) time. Analogouslyl_(w) is scanned for in-
tervals fulfilling | < upper in the symmetric casgper <w.

(2) Descend from the fork node down to the node that is
closest tdower. For each node on this path, two cases are
distinguished: Ifw < lower, U(w) has to be scanned as be-
fore to report the intersecting intervals registered &th-
erwise, iflower < w, the query interval is known to intersect
all intervals registered at the nodeln addition, all inter-

» vals from the right subtree of are reported except\f is

the fork node.

(3) Descend from the fork node down to the node closest
to upper. Analogously to step (2), the lidt$w) have to be
scanned, and all registered intervals from the respective
nodes are reported.

Note that the algorithm even works for degenerate inter-

The parametensffset, leftRoot, rightRoot andminstep form  vals, i.e lower = upper, thus supporting point queries as ef-
anO(1) representation of the primary structure that is dyficient as interval queries. Figure 7 provides an illustration
namically adjusted to the cardinality of the current data of the algorithm. Only the nodes of the tree which are affect-
space. Including the global root 0, the resulting tree heightd by the search are depicted. The symbols indicate the
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Figure 7: Query processing in the interval tree.

nodesfor which U(w) or L(w) are scanned, and the nodesfor
which all entries haveto bereported. Notethat the | atter are
exactly the nodes w that are covered by the query interval,
i.e. lower < w < upper.

4.2 Trandation into a Single SQL Query
Thebasic ideaof our approachisto exploit the efficiency of
built-in relational indexes. Scanning thelists U(w) and L(w)
immediately translates to an index range scan over the at-
tributes (node, upper) and (node, lower), respectively. These
attribute combinations are managed by the upperindex and
|ower Index as defined above. Scanning the nodesw between
lower and upper is supported by any of the two indexes.
Rather than immediately scanning thelists U(w) and L(w)
while descending the tree, in our algorithm the respective
nodesarecollectedintransient listsleftNodesand rightNodes
both obeying the unary relational schema (node). Thesetran-
sient relations are managed in the transient session state thus
causing no I/O effort. Asfor interval insertion (Figure 6), the
virtual primary structure is descended by integer arithmetics
without any 1/0O operation. Finally, asingle SQL query suf-
ficesto retrieve al intersecting intervals from the database.
A basic version of the query is shown in Figure 8.

SELECT id FROM Intervalsi, leftNodes | eft, rightNodes right
WHERE (i.node = left.node AND i.upper >= :lower)

OR (i.node = right.node AND i.lower <= :upper)

OR (i.node BETWEEN :lower effset AND :upper —offset);

Figure8: Prelim. SQL query to retrieve intersecting intervals.

Asillustratedin Figure 7, the nodesfrom | eftNodes, from
rightNodes, and the nodes between lower and upper aredis-
tinct from each other. Thethree OR-connected conditionsin
the WHERE clause therefore specify digoint interval sets,
and the DISTINCT option is omitted from the SELECT
clause since no duplicates have to be eliminated.

4.3 Simplified SQL Query

The first transformation typically performed by relational
optimizers is to split the complex OR-query into a set of
three simpler queries connected by UNION ALL. The sub-

queries concerning leftNodes and rightNodes are efficiently
supported by the respective indexes upperIndex and lower -
Index and cannot be intermixed. The third subquery that
only addresses the attribute node, however, is supported by
any of the two indexes. Hence, in order to reduce the cost
for internal query management, we combine this subquery
with theleftNodes subquery according tothefollowing lem-
mawhich analogously holds for the rightNodes subquery.
Lemma. (i) The condition i.node = left.node’ may be
substituted by the equivalent conditionnbde BE-
TWEEN left.min AND left.max if left.node = left.min =
left.max without loss of efficiency for an index scan.
(if) The condition i.node BETWEEN :lower — offset
AND :upper — offsétis not restricted by adding the con-
straint i.upper >= :lower’.
Proof. (i) The equivalence is obvious. An index scan
searches the first hit by testiteft.min < i.node and pro-
ceeds while testing the conditianode < left.max.
(ii) Since by definitionj.node < i.upper — offsetholds
for any interval i in the tree, the condition :lower —
offset< i.nodeimplies :lower < i.upper
In detail, the modifications of the query are asfollows. The
trangient relation leftNodesnow obeys the binary relational
schema(min, ma) instead of theunary schema(nodg. When
descending the tree, anode w is inserted into leftNodesas a
pair (w, w) rather than asasingle value (w) asbefore. Finally,
to include the original BETWEEN subquery, the pair
(lower — offset, upper — offset) is inserted intéeftNodes. The
lemma guarantees that no intervals are missing after the
transformation. Figure 9 presents the resulting two-fold SQL
query for intersection search still producing no duplicates.

SELECT id FROM Intervals ieftNodes left
WHERE i.node BETWEEN left.min AND left.max
AND i.upper>= :lower
UNION ALL
SELECT id FROM Intervals rightNodes right
WHERE i.node = right.node AND i.lowet= :upper;

Figure 9: Final SQL statement for intersection queries.

Figure 10 shows the execution plan for the query as gen-
erated by an Oracle8i server. Most RDBMS provide an easy
way (‘hints’) to guarantee this query plan to be chosen by
the optimizer. For this example the attribigtevas included
in the indexes.

4.4 Analysisof the Algorithm

In Section 3.5, we already observed that the tree height of
h=0(logm) only depends on two parameters that deter-
mine the quotient, i.e. the extension of the intervals in the
data space and the minimal interval length. It does not de-
pend on the numberof intervals registered in the tree. The
tree height is an upper bound for the number of entries in the
transient relationkeftNodes andrightNodes. For each of the
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Figure 10: Execution plan for anintersection query in Oracle.

O(log m) entries in the transient relations, an index range
scan on upperIndex or lowerIndexis performed. Such anin-
dex range scan consists of two phases. In asearch phase, the
beginning of the range p islocated, and in ascan phase, the
r, resulting objects from the range are reported. Typical in-
dex structuressuch asthe B+-treeinrelational database sys-
temsrequire O(logyn) 1/O operationsfor the search phaseon
adatabase containing n objects, and O(r,/b) 1/Osin the scan
phase to report ther, results for the range p.

Theorem (Complexity of Query Processing).

An intersection query on a Relational Interval Tree of

height h that returns r results from the n intervalsin the

tree has an 1/O complexity of

O(h - log,n +r/b)

values for the fork nodes thus achieving a very natural inte-
gration into the Relational Interval Tree.

Infinity. In a first attempt, we set the fork node of an in-
finite interval to MAXINT but do not further modify the al-
gorithms. Thus, the tree becomes very high but it is almost
empty close to the root. A slight but very effective extension
avoids the resulting overhead for query processing: An arti-
ficial exclusive valudork,, is assigned to the attributede
of an infinite interval. At query processing tinfierk,, is in-
serted into the transient lisightNodes. Thus, the lower
bounds of intervals ending &finity are tested against the
upper bound of the query interval as desired. Note that if
choosingork,, = NULL, the conditioni.node= right.node’
in Figure 9 is not evaluated correctly whereas our choice to
setfork, = MAXINT avoids any modification of the SQL
statement thus yielding a perfect integration.

Now. Whereasdnfinity is constant over time, intervals
ending ahow continuously change their upper bound. Aim-
ing at a correct positioning of now-relative intervals within
the tree at any time requires permanent modifications of the
node values and, therefore, of the tree. Our solution com-
pletely avoids such an overhead and, again, uses an artificial
exclusive node value, efgrk,., = MAXINT — 1, which is
assigned tamow-ending intervals when being inserted. At
query processing timéork,,,, is inserted into the transient

Proof. For each of th@(h) entries in the transient rela- tablerightNodes exactly iflower < now, i.e. if the query in-
tions IeftNodes and rightNodes, an index search of terval begins in the past. As desired, the SQL query then
O(log,n) I/0 complexity is performed. Scanning and re- tests the lower bounds of thew-ending intervals against

porting the total of results require®(r/b) operations.

the upper bound of the query interval.

We conjecture that this complexity is optimal for managing

intervals by relational storage structures.

45 General Topological Queries

5 Object-Relational Wrapping
The Relational Interval Tree may be easily implemented on

In addition to the intersection query predicate, there are 1@P of any relational DBMS featuring a procedural query
more fine-grained temporal relationships between intervalnguage like the Oracle8i Server with PL/SQL or the Infor-
[BO 98]. Obviously, also queries based on these specializéBix Universal Server with SPL. A persistent data dictionary
predicates are efficiently supported by the Relational InterProvides a convenient way to store index specific system pa-
val Tree. For some of them, there is an additional potentidRmeters such asot orminstep, whereas thesftNodes and

for optimization since they only refer to the lower bound adightNodes query tables can be efficiently managed in the
in meets or in before, or they only refer to the upper bound transientuser session state. As mentioned in Section 3.3, the
as inmet-by or inafter. Competing methods such as the IB+-insertion and deletion of a new interval requires only a sin-
tree [BO 98] or the IST [GLOT 96] efficiently support only 9le SQL statement. The computation and storage of the fork

queries referring to one of the two interval bounds,aveer

for the IB+-tree or the V-ordering angbper for the D-or-

node and the update of the index parameters can be per-
formed automatically by database triggers. Whereas the

dering. Using these techniques, queries referring to the o§oMplete index maintenance therefore may be managed by
posite bound are processed with a poor performance sinéetfigger mechanism, query processing has to be started

O(n) comparisons are required in the worst case.

4.6 Handling Temporal Intervals

manually by invoking the appropriate stored procedure.
Modern object-relational DBMS provide a solution to
preserve the declarative paradigm of SQL even at query

In the context of temporal databases, the special vatwes time, because all maintenance and access procedures of a
andinfinity occur as upper values of valid time intervalscustom index structure are completely hidden from the user.
[BO 98]. The straightforward solution to manage these inAn extensible indexing framework allows the developer to
tervals in separate indexes, however, yields the major disapackage the implementation of the access method and the
vantage that additional SQL (sub-)queries have to be exeorresponding index data into a user-defined indextype
cuted. This overhead is avoided by managing appropriafgnf 98] [Ora 99a] [IBM 99]. As the object-relational data-



base server automatically triggersthe maintenance and scan
of custom indexes, end users can use the Relational Interval
Treejust like abuilt-in index. With a cost model registered
at the optimizer, the server is able to generate efficient exe-
cution plansfor querieson interval datatypes.

6 Experimental Evaluation

6.1 Experimental Setup

To evaluate the performance of our approach, we have inte-
gratedtheRelational Interval Treeinto the Oracle Server Re-
lease 8.1.5 using PL/SQL and packaged stored procedures.
All experiments have been executed on a Pentium Pro/180
server having 128 MB main memory and an U-SCSI| hard
drive. The database block cache was set to the default value
of 200 database blocks with a block size of 2 KB. We have
evaluated the performance of interval intersection querieson
various interval databases with different data distributions
and cardinalities (cf. Table 1). The bounding pointsof al in-
tervalslieinthedomain of [0, 22°-1]. For thedistributions D,
and D,, we assume transaction time or valid time intervals
where the arrival of temporal tuples follows a Poisson pro-
cess. Thustheinter-arrival timeisdistributed exponentially.

Name Starting point Duration
distribution distribution
D,(n,d) uniform uniformin [0, 2d]
H 20
Dynd)| M [0,27-1] exponential in [0, o], mean = d
Dy(n,d) POiSSON process uniformin [0, 2d]
H 20
D,nd) | NMO.27-1 | exponential in [0, o], mean = d

Table 1: Sampleinterval databases with cardinality n.

As mentioned in Section 2.3, among the wide range of
existing interval access methods only the static Window-
List approach [Ram 97], the Tile Index [RS 99] and the In-
terval-Spatial Transformation technique[ GLOT 96] arede-
signed to use existing B+-trees on an as-they-are basis, i.e.
without any internal modifications or augmentations.
Therefore, werestrict our performance comparison to these
techniques.

Window-L ist. In our experiments, queries on Window-
Listsproduced twice asmany 1/0 operationsthan on the dy-
namic Rl-tree. As the Window-List technique is a static
storage structure, we do not further investigate it in the fol-
lowing evaluation of dynamic structures.

Tile Index (T-index). In our experiments, we have used
the recommended hybrid indexing method of fixed- and vari-
able-sized tiling as it is documented in [Ora97] and
[Ora99b]. To ensure comparability to the other techniques,
we havereimplemented the hybridindexing packagefor one-
dimensional data spaces. Our version is less complex and
shows a significant performance gain over the original two-
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Figure 12: Number of index entriesfor varying database size.

dimensional implementation. WhenweusetheTileIndex for
the interval domain of [0, 2%°-1], the fixed level parameter
may be set to avalue between 0 and 20. For our experiments,
wetook arepresentative sample of 1,000 intervalsfrom each
individual data distribution and determined the optimal set-
ting for the fixed level. In most cases, the optimum for the
query performancewasfound at thelevel 7, 8 or 9.

Interval-Spatial Transformation (IST). For the fol-
lowing experimentswe haveimplemented the Interval -Spa-
tid Transformation with D-order as proposed by
[GLOT 96]. For integer interval bounds[lower, upper], the
D-order index is equivaent to a composite index on the at-
tributes (upper, lower) and therefore has identical perfor-
mance characteristics. Range queries on D-ordered inter-
vals can be expressed in a simple SQL statement by just
testing the upper and lower boundsfor intersection with the
query range, as presented in Figure 11.

SELECT id FROM Intervalsi
WHERE (i.upper >= :lower AND i.lower <= :upper);

Figure 11: A range query for the Interval-Spatial
Transformation (1ST) on a D-ordered index.

Relational Interval Tree (RI-treg). We have imple-
mented the Relational Interval Tree asit is described in the
previous sections. As each data distribution of Table 1 con-
tainsintervals with length O (i.e. points), the granularity of
therespective dataspaceismaximal. Therefore, the minstep
system parameter always reaches its minimum value of 1
uponindex creation and the virtual backbonetreeisexpand-
ed to aheight of 20, unless noted otherwise.

6.2 Storage Occupation

We performed several experiments to compare the Rl-tree
with the IST and the T-index. An illustration of the storage
occupation of thethreetechniquesisgivenin Figure 12 for
a D,(*,2K) distribution. As the IST technique produces no
redundancy, the number of index entriesisequal tothenum-
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Figure 13: Disk accesses and responsetimefor range queries
on a D, datadistribution (depending on query selectivity).

ber of indexed intervals. The RI-tree requirestwo index en-
triesfor each stored interval (for thelowerlndex and the up-
perlindex, cf. Figure 2). In our example, the T-index needs a
redundancy factor of 10.1 to index the decomposed inter-
vals accurately. Aswe have experienced in our evaluation,
this causes mgjor performance and storage problems for
very largeinterval databases.

6.3 Query Processing

All query experiments given in this subsection have been
performed with query intervals following a distribution
which is compatibleto the respective interval database. Our
first experiment comparesthe number of physical disk block
accesses and the response time of the three access methods
depending on the selectivity of the range queries. Figure 13
depicts polynomially interpolated results of 100 range que-
ries on a D,(100k,2k) distribution. At a query selectivity of
0.5%, the RI-tree clearly outperforms the other techniques
by afactor of 10.8 (T-index) and 46.3 (I1ST) for the disk ac-
cesses. At a 3.0% selectivity, the speedup factor is 22.8 (T-
index) and 13.6 (IST). Thus the Relationa Interval Tree
shows a superior performance for both high and low query
selectivities. Thefast responsetimesof T-indexand IST (e.g.
500 I/0s in two seconds) are caused by the good clustering
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Figure 14: Disk accesses and response time for range queries
on aD, data distribution (depending on the database size).

properties of the bulk loaded indexes and will deteriorate in
adynamic environment. For D,(100Kk,2k), D5(100k,2k), and
D,(100k,2k) datasets we measured similar results.

Figure 14 compares the scaleup of the three techniques
for Dy(*,2k) datasets growing from 1,000 to 1,000,000
stored intervals. For each database size, the average number
of disk accesses and the average response time of 20 range
queries is presented. Both the T-index and the IST demon-
strate their linear scal eup whereas the RI-tree scales sublin-
early and showsasignificant performancegain over the oth-
er access methods. The speedup factor from the T-index to
the RI-treeincreasesfrom 2to 42 (disk access) and from 2.0
t0 4.9 (response time). We observed a similar improvement
for the same experiments on Dy(*,2k), D,(*,2k), and
D4(*,2k) datadistributions.

The next set of experimentsinvestigates the influence of
the dataspace granularity on the query performance of the
RI-tree. For thisexperiment, werestricted the domain for the
interval lengths of a D5 distribution from [0, 4k] to
[500, 3.5k], [1k, 3k], and [1.5k, 2.5K], respectively. Within-
creasing minimum interval length, fewer levelsof thevirtual
backbone have to be traversed due to larger minstep values.
AsshowninFigure 15, theresponsetimeisa most indepen-
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Figure 15: Response time for range queries with different
selectivities on an RI-tree for restricted D, databases.

dent of the minimum length of the stored intervals. So the
resulting height h of the virtual backbone hasonly little em-
pirical significance. The response times for the different se-
lectivitiesillustrate also the desired property that the perfor-
mance of queriesislargely bound to the number of results.

The next series of experiments comparestheinfluence of
the mean of interval duration on the query performance of
the different techniques. Figure 16 depicts the average re-
sultsfor asample of 20 range queries on various D ,(100k,*)
datasets with increasing average length of intervals. The T-
index and the RI-tree require about the same response time
for range queries, if the average length of the indexed inter-
vals is very low. As short intervals do not suffer from the
spatia decomposition, the redundancy caused by the T-in-
dex tiling approach decreases from 10.1 to 1 when the mean
value of interval duration is reduced from 2,000 to 0. Even
for apure point database, the RI-tree performssdlightly better
thanthe T-index. The benefit of the RI-tree becomesobvious
for ahigher mean of duration. Both the RI-tree and the IST
perform better aslonger intervalsare stored in the database.
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Figure 16: Response time on a D, data distribution with
varying mean of interval length. Even for small intervals, the
Ri-tree outperforms the T-index approach.
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Figure 17: Response time for a “sweeping” point query on a
D, data distribution. ThEST degenerates with higher distance
to the upper bound of the data space.

Asexpected, thelocation of the query range with respect
to the data domain exerts a strong influence on the perfor-
mance of the IST. In Figure 17 we illustrate this effect by
‘sweeping’ a query point starting at the upper bound of the
data space where the bound indexuppér, lower) benefits
the most from the high selectivity in the first indexed col-
umn. The comparison between tRietree and T-index re-
veals another interesting aspect of this experiment: Al-
though for point queries thieindex performs at its best as it
retrieves no duplicates caused by redundanclthese is
still slightly better on the average. We obtained these results
as well for the other interval data distributions Dyand D,

7 Conclusions

In this paper, we presented the Relational Interval Tree
which is a new access method for interval data. It can be cre-
ated for any relational or object-relational table containing
intervals. As we have shown, the main design goals for our
new approach have been fulfilled:

* Integration. The RI-tree is not a stand-alone concept. It
can easily be implemented on top of any relational
DBMS. As much functionality as possible of built-in in-
dexes is exploited and no changes or additions to the in-
ternal layer of the database server are made. Therefore
the effort of code development and code maintenance is
minimal. For modern database servers featuring an ob-
ject-relational application program interface, a natural
and seamless integration can be achieved while preserv-
ing the declarative paradigm of SQL.

Performance. Our analytical and experimental evalua-
tion of the RI-tree shows superior performance charac-
teristics compared to previous approaches. This is
achieved by introducing the virtual primary structure.
Although the structure is space-oriented, the storage of
intervals is object-driven and, thus, no storage space is
wasted for empty regions in the data space.



» Extensions. Our basic concept supports a wide range ofHNP 95] Hellerstein J. M., Naughton J. F., Pfeffer Beneral-

efficient application specific extensions. We have illus-

trated this by the dynamic expansion of the data space, by

handling the special temporal variabfesv andinfinity,

and by discussing fine-grained topological query types.
The flexibility and extensibility of the RI-tree concept
opens up a number of interesting research problems and e{ﬁiM 99]
plications. A promising extension is the application of the
Skeleton Index technique to the RI-tree, because a partig'ﬂ
materialization of the primary structure can be adapted to
the expected data distribution and, for example, the ma
agement of string intervals is supported.
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