Techinical Proofs for
 "Nonlinear Learning using Local Coordinate Coding"

1 Notations and Main Results

Definition 1.1 (Lipschitz Smoothness) A function $f(x)$ on \mathbb{R}^{d} is (α, β, p)-Lipschitz smooth with respect to a norm $\|\cdot\|$ if

$$
\left|f\left(x^{\prime}\right)-f(x)\right| \leq \alpha\left\|x-x^{\prime}\right\|
$$

and

$$
\left|f\left(x^{\prime}\right)-f(x)-\nabla f(x)^{\top}\left(x^{\prime}-x\right)\right| \leq \beta\left\|x-x^{\prime}\right\|^{1+p}
$$

where we assume $\alpha, \beta>0$ and $p \in(0,1]$.
Definition 1.2 (Coordinate Coding) A coordinate coding is a pair (γ, C), where $C \subset \mathbb{R}^{d}$ is a set of anchor points, and γ is a map of $x \in \mathbb{R}^{d}$ to $\left[\gamma_{v}(x)\right]_{v \in C} \in R^{|C|}$ such that $\sum_{v} \gamma_{v}(x)=1$. It induces the following physical approximation of x in \mathbb{R}^{d} :

$$
\gamma(x)=\sum_{v \in C} \gamma_{v}(x) v .
$$

Moreover, for all $x \in \mathbb{R}^{\text {d }}$, we define the coding norm as

$$
\|x\|_{\gamma}=\left(\sum_{v \in C} \gamma_{v}(x)^{2}\right)^{1 / 2}
$$

Proposition 1.1 The map $x \rightarrow \sum_{v \in C} \gamma_{v}(x) v$ is invariant under any shift of the origin for representing data points in \mathbb{R}^{d} if and only if $\sum_{v} \gamma_{v}(x)=1$.

Lemma 1.1 (Linearization) Let (γ, C) be an arbitrary coordinate coding on \mathbb{R}^{d}. Let f be an (α, β, p)-Lipschitz smooth function. We have for all $x \in \mathbb{R}^{d}$:

$$
\left|f(x)-\sum_{v \in C} \gamma_{v}(x) f(v)\right| \leq \alpha\|x-\gamma(x)\|+\beta \sum_{v \in C}\left|\gamma_{v}(x)\right|\|v-\gamma(x)\|^{1+p} .
$$

Definition 1.3 (Localization Measure) Given α, β, , and coding (γ, C), we define

$$
Q_{\alpha, \beta, p}(\gamma, C)=\mathbb{E}_{x}\left[\alpha\|x-\gamma(x)\|+\beta \sum_{v \in C}\left|\gamma_{v}(x)\right|\|v-\gamma(x)\|^{1+p}\right]
$$

Definition 1.4 (Manifold) A subset $\mathcal{M} \subset \mathbb{R}^{d}$ is called a p-smooth ($p>0$) manifold with intrinsic dimensionality $m=m(\mathcal{M})$ if there exists a constant $c_{p}(\mathcal{M})$ such that given any $x \in \mathcal{M}$, there exists m vectors $v_{1}(x), \ldots, v_{m}(x) \in \mathbb{R}^{d}$ so that $\forall x^{\prime} \in \mathcal{M}$:

$$
\inf _{\gamma \in \mathbb{R}^{m}}\left\|x^{\prime}-x-\sum_{j=1}^{m} \gamma_{j} v_{j}(x)\right\| \leq c_{p}(\mathcal{M})\left\|x^{\prime}-x\right\|^{1+p}
$$

Definition 1.5 (Covering Number) Given any subset $\mathcal{M} \subset \mathbb{R}^{d}$, and $\epsilon>0$. The covering number, denoted as $\mathcal{N}(\epsilon, \mathcal{M})$, is the smallest cardinality of an ϵ-cover $C \subset \mathcal{M}$. That is,

$$
\sup _{x \in \mathcal{M}} \inf _{v \in C}\|x-v\| \leq \epsilon .
$$

Theorem 1.1 (Manifold Coding) If the data points x lie on a compact p-smooth manifold \mathcal{M}, and the norm is defined as $\|x\|=\left(x^{\top} A x\right)^{1 / 2}$ for some positive definite matrix A. Then given any $\epsilon>0$, there exist anchor points $C \subset \mathcal{M}$ and coding γ such that

$$
\begin{aligned}
& |C| \leq(1+m(\mathcal{M})) \mathcal{N}(\epsilon, \mathcal{M}) \\
& Q_{\alpha, \beta, p}(\gamma, C) \leq\left[\alpha c_{p}(\mathcal{M})+\left(1+\sqrt{m}+2^{1+p} \sqrt{m}\right) \beta\right] \epsilon^{1+p}
\end{aligned}
$$

Moreover, for all $x \in \mathcal{M}$, we have $\|x\|_{\gamma}^{2} \leq 1+(1+\sqrt{m})^{2}$.
Given a local-coordinate coding scheme (γ, C), we approximate each $f(x) \in \mathcal{F}_{\alpha, \beta, p}^{a}$ by

$$
f(x) \approx f_{\gamma, C}(\hat{w}, x)=\sum_{v \in C} \hat{w}_{v} \gamma_{v}(x),
$$

where we estimate the coefficients using ridge regression as:

$$
\begin{equation*}
\left[\hat{w}_{v}\right]=\arg \min _{\left[w_{v}\right]}\left[\sum_{i=1}^{n} \phi\left(f_{\gamma, C}\left(w, x_{i}\right), y_{i}\right)+\lambda \sum_{v \in C}\left(w_{v}-g(v)\right)^{2}\right], \tag{1}
\end{equation*}
$$

Theorem 1.2 (Generalization Bound) Suppose $\phi(p, y)$ is Lipschitz: $\left|\phi_{1}^{\prime}(p, y)\right| \leq$ B. Consider coordinate coding (γ, C), and the estimation method (1) with random training examples $S_{n}=$ $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$. Then the expected generalization error satisfies the inequality:

$$
\begin{aligned}
& \mathbb{E}_{S_{n}} \mathbb{E}_{x, y} \phi\left(f_{\gamma, C}(\hat{w}, x), y\right) \\
\leq & \inf _{f \in \mathcal{F}_{\alpha, \beta, p}}\left[\mathbb{E}_{x, y} \phi(f(x), y)+\lambda \sum_{v \in C}(f(v)-g(v))^{2}\right]+\frac{B^{2}}{2 \lambda n} \mathbb{E}_{x}\|x\|_{\gamma}^{2}+B Q_{\alpha, \beta, p}(\gamma, C) .
\end{aligned}
$$

Theorem 1.3 (Consistency) Suppose the data lie on a compact manifold $\mathcal{M} \subset \mathbb{R}^{d}$, and the norm $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^{d}. If loss function $\phi(p, y)$ is Lipschitz. As $n \rightarrow \infty$, we choose $\alpha, \beta \rightarrow \infty, \alpha / n, \beta / n \rightarrow 0(\alpha, \beta$ depends on $n)$, and $p=0$. Then it is possible to find coding (γ, C) using unlabeled data such that $|C| / n \rightarrow 0$ and $Q_{\alpha, \beta, p}(\gamma, C) \rightarrow 0$. If we pick $\lambda n \rightarrow \infty$, and $\lambda|C| \rightarrow 0$. Then the local coordinate coding method (1) with $g(v) \equiv 0$ is consistent as $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{S_{n}} \mathbb{E}_{x, y} \phi(f(\hat{w}, x), y)=\inf _{f: \mathcal{M} \rightarrow \mathbb{R}} \mathbb{E}_{x, y} \phi(f(x), y)
$$

2 Proofs

2.1 Proof of Proposition 1.1

Consider a change of the \mathbb{R}^{d} origin by $u \in \mathbb{R}^{d}$, which shifts any point $x \in \mathbb{R}^{d}$ to $x+u$, and points $v \in C$ to $v+u$. The shift-invariance requirement implies that after the change, we map $x+u$ to $\sum_{v \in C} \gamma_{v}(x) v+u$, which should equal $\sum_{v \in C} \gamma_{v}(x)(v+u)$. This is equivalent to $u=\sum_{v \in C} \gamma_{v}(x) u$, which holds if and only if $\sum_{v \in C} \gamma_{v}(x)=1$.

2.2 Proof of Lemma 1.1

For simplicity, let $\gamma_{v}=\gamma_{v}(x)$ and $x^{\prime}=\gamma(x)=\sum_{v \in C} \gamma_{v} v$. We have

$$
\begin{aligned}
\left|f(x)-\sum_{v \in C} \gamma_{v} f(v)\right| & \leq\left|f(x)-f\left(x^{\prime}\right)\right|+\left|\sum_{v \in C} \gamma_{v}\left(f(v)-f\left(x^{\prime}\right)\right)\right| \\
& =\left|f(x)-f\left(x^{\prime}\right)\right|+\left|\sum_{v \in C} \gamma_{v}\left(f(v)-f\left(x^{\prime}\right)-\nabla f\left(x^{\prime}\right)^{\top}\left(v-x^{\prime}\right)\right)\right| \\
& \leq\left|f(x)-f\left(x^{\prime}\right)\right|+\sum_{v \in C}\left|\gamma_{v}\right|\left|\left(f(v)-f\left(x^{\prime}\right)-\nabla f\left(x^{\prime}\right)^{\top}\left(v-x^{\prime}\right)\right)\right| \\
& \leq \alpha\left\|x-x^{\prime}\right\|_{2}+\beta \sum_{v \in C}\left|\gamma_{v}\right|\left\|x^{\prime}-v\right\|^{1+p} .
\end{aligned}
$$

This implies the bound.

2.3 Proof of Theorem 1.1

Let $m=m(\mathcal{M})$. Given any $\epsilon>0$, consider an ϵ-cover C^{\prime} of \mathcal{M} with $\left|C^{\prime}\right| \leq \mathcal{N}(\epsilon, \mathcal{M})$. Given each $u \in C^{\prime}$, define $C_{u}=\left\{v_{1}(u), \ldots, v_{d}(u)\right\}$, where $v_{j}(u)$ are defined in Definition 1.4. Define the anchor points as

$$
C=\cup_{u \in C^{\prime}}\left\{u+v_{j}(u): j=1, \ldots, m\right\} \cup C^{\prime} .
$$

It follows that $|C| \leq(1+m) \mathcal{N}(\epsilon, \mathcal{M})$.
In the following, we only need to prove the existence of a coding γ on \mathcal{M} that satisfies the requirement of the theorem. Without loss of generality, we assume that $\left\|v_{j}(u)\right\|=\epsilon$ for each u and j, and given $u,\left\{v_{j}(u): j=1, \ldots, m\right\}$ are orthogonal with respect to $\mathrm{A}: v_{j}^{\top}(u) A v_{k}(u)=0$ when $j \neq k$.

For each $x \in \mathcal{M}$, let $u_{x} \in C^{\prime}$ be the closest point to x in C^{\prime}. We have $\left\|x-u_{x}\right\| \leq \epsilon$ by the definition of C^{\prime}. Now, Definition 1.4 implies that there exists $\gamma_{j}^{\prime}(x)(j=1, \ldots, m)$ such that

$$
\left\|x-u_{x}-\sum_{j=1}^{m} \gamma_{j}^{\prime}(x) v_{j}\left(u_{x}\right)\right\| \leq c_{p}(\mathcal{M}) \epsilon^{1+p} .
$$

The optimal choice is the A-projection of $x-u_{x}$ to the subspace spanned by $\left\{v_{j}\left(u_{x}\right): j=1, \ldots, m\right\}$. The orthogonality condition thus implies that

$$
\sum_{j=1}^{m} \gamma_{j}^{\prime}(x)^{2}\left\|v_{j}\left(u_{x}\right)\right\|^{2} \leq\left\|x-u_{x}\right\|^{2} \leq \epsilon^{2}
$$

Therefore

$$
\sum_{j=1}^{m} \gamma_{j}^{\prime}(x)^{2} \leq 1
$$

which implies that for all x :

$$
\sum_{j=1}^{m}\left|\gamma_{j}^{\prime}(x)\right| \leq \sqrt{m} .
$$

We can now define the coordinate coding of $x \in \mathcal{M}$ as

$$
\gamma_{v}(x)=\left\{\begin{array}{cc}
\gamma_{j}^{\prime} & v=u_{x}+v_{j}\left(u_{x}\right) \\
1-\sum_{j=1}^{m} \gamma_{j}^{\prime} & v=u_{x} \\
0 & \text { otherwise }
\end{array} .\right.
$$

This implies the following bounds:

$$
\|x-\gamma(x)\| \leq c_{p}(\mathcal{M}) \epsilon^{1+p}
$$

and

$$
\begin{align*}
\sum_{v \in C}\left|1-\sum j=1^{m} \gamma_{j}^{\prime}\right|\|v-\gamma(x)\|^{1+p} & =\left|\gamma_{u_{x}}(x)\right|\left\|\gamma(x)-u_{x}\right\|+\sum_{j=1}^{m}\left|\gamma_{j}^{\prime}(x)\right|\left\|\left(v-u_{x}\right)-\left(\gamma(x)-u_{x}\right)\right\|^{1+p} \tag{2}\\
& \leq(1+\sqrt{m}) \epsilon^{1+p} \sum_{j=1}^{m}\left|\gamma_{j}^{\prime}(x)\right|(\epsilon+\epsilon)^{1+p} \tag{3}\\
& =\left[1+\sqrt{m}+2^{1+p} \sqrt{m}\right] \epsilon^{1+p} \tag{4}
\end{align*}
$$

where we have used $\left\|v-u_{x}\right\|=\epsilon$, and $\left\|\gamma(x)-u_{x}\right\| \leq\left\|x-u_{x}\right\| \leq \epsilon$.

2.4 Proof of Theorem 1.2

Consider $n+1$ samples $S_{n+1}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n+1}, y_{n+1}\right)\right\}$. We shall introduce the following notation:

$$
\begin{equation*}
\left[\tilde{w}_{v}\right]=\arg \min _{\left[w_{v}\right]}\left[\frac{1}{n} \sum_{i=1}^{n+1} \phi\left(f_{\gamma, C}\left(w, x_{i}\right), y_{i}\right)+\lambda \sum_{v \in C} w_{v}^{2}\right] . \tag{5}
\end{equation*}
$$

Let k be an integer randomly drawn from $\{1, \ldots, n+1\}$. Let $\left[\hat{w}_{v}^{(k)}\right]$ be the solution of

$$
\left[\hat{w}_{v}^{(k)}\right]=\arg \min _{\left[w_{v}\right]}\left[\frac{1}{n} \sum_{i=1, \ldots, n+1 ; i \neq k} \phi\left(f_{\gamma, C}\left(w, x_{i}\right), y_{i}\right)+\lambda \sum_{v \in C} w_{v}^{2}\right],
$$

with the k-th example left-out.
We have the following stability lemma from [1], which can be stated as follows using our terminology:

Lemma 2.1 The following inequality holds

$$
\left|f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right)-f_{\gamma, C}\left(\tilde{w}, x_{k}\right)\right| \leq \frac{\left\|x_{k}\right\|_{\gamma}^{2}}{2 \lambda n}\left|\phi_{1}^{\prime}\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right), y_{k}\right)\right| .
$$

By using Lemma 2.1, we obtain for all $\alpha>0$:

$$
\begin{aligned}
& \phi\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right), y_{k}\right)-\phi\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right) \\
&= \phi\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right), y_{k}\right)-\phi\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right)-\phi_{1}^{\prime}\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right)\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right)-f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right)\right) \\
& \quad+\phi_{1}^{\prime}\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right)\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right)-f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right)\right) \\
& \geq \phi_{1}^{\prime}\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right)\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right)-f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right)\right) \\
& \geq-\phi_{1}^{\prime}\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right)^{2}\left\|x_{k}\right\|_{\gamma}^{2} /(2 \lambda n) \\
& \geq-B^{2}\left\|x_{k}\right\|_{\gamma}^{2} /(2 \lambda n) .
\end{aligned}
$$

In the above derivation, the first inequality uses the convexity of $\phi(f, y)$ with respect to f, which implies that $\phi\left(f_{1}, y\right)-\phi\left(f_{2}, y\right)-\phi_{1}^{\prime}\left(f_{2}, y\right)\left(f_{1}-f_{2}\right) \geq 0$. The second inequality uses Lemma 2.1, and the third inequality uses the assumption of the loss function.

Now by summing over k, and consider any fixed $f \in \mathcal{F}_{\alpha, \beta, p}$, we obtain:

$$
\begin{aligned}
& \sum_{k=1}^{n+1} \phi\left(f_{\gamma, C}\left(\hat{w}^{(k)}, x_{k}\right), y_{k}\right) \\
\leq & \sum_{k=1}^{n+1}\left[\phi\left(f_{\gamma, C}\left(\tilde{w}, x_{k}\right), y_{k}\right)+\frac{B}{2 \lambda n}\left\|x_{k}\right\|_{\gamma}^{2}\right] \\
\leq & n\left[\frac{1}{n} \sum_{k=1}^{n+1} \phi\left(\sum_{v \in C} \gamma_{v}\left(x_{k}\right) f(v), y_{k}\right)+\lambda \sum_{v \in C} f(v)^{2}\right]+\frac{B^{2}}{2 \lambda n} \sum_{k=1}^{n+1}\left\|x_{k}\right\|_{\gamma}^{2} \\
\leq & n\left[\frac{1}{n} \sum_{k=1}^{n+1}\left[\phi\left(f\left(x_{k}\right), y_{k}\right)+B Q\left(x_{k}\right)\right]+\lambda \sum_{v \in C} f(v)^{2}\right]+\frac{B^{2}}{2 \lambda n} \sum_{k=1}^{n+1}\left\|x_{k}\right\|_{\gamma}^{2},
\end{aligned}
$$

where $Q(x)=\alpha\|x-\gamma(x)\|+\beta \sum_{v \in C}\left|\gamma_{v}(x)\right|\|v-\gamma(x)\|^{1+p}$. In the above derivation, the second inequality follows from the definition of \tilde{w} as the minimizer of (5). The third inequality follows from Lemma 1.1. Now by taking expectation with respect to S_{n+1}, we obtain

$$
\begin{aligned}
& (n+1) \mathbb{E}_{S_{n+1}} \phi\left(f_{\gamma, C}\left(\hat{w}^{(n+1)}, x_{n+1}\right), y_{n+1}\right) \\
\leq & n\left[\frac{n+1}{n} \mathbb{E}_{x, y} \phi(f(x), y)+\frac{n+1}{n} B Q_{\alpha, \beta, p}(\gamma, C)+\lambda \sum_{v \in C} f(v)^{2}\right]+\frac{B^{2}(n+1)}{2 \lambda n} \mathbb{E}_{x}\|x\|_{\gamma}^{2} .
\end{aligned}
$$

This implies the desired bound.

2.5 Proof of Theorem 1.3

Note that any measurable function $f: \mathcal{M} \rightarrow R$ can be approximated by $\mathcal{F}_{\alpha, \beta, p}$ with $\alpha, \beta \rightarrow \infty$ and $p=0$. Therefore we only need to show

$$
\lim _{n \rightarrow \infty} \mathbb{E}_{S_{n}} \mathbb{E}_{x, y} \phi\left(f_{\gamma, C}(\hat{w}, x), y\right)=\lim _{n \rightarrow \infty} \inf _{f \in \mathcal{F}_{\alpha, \beta, p}} \mathbb{E}_{x, y} \phi(f(x), y) .
$$

Theorem 1.1 implies that it is possible to pick (γ, C) such that $|C| / n \rightarrow 0$ and $Q_{\alpha, \beta, p}(\gamma, C) \rightarrow 0$. Moreover, $\|x\|_{\gamma}$ is bounded.

Given any $f \in \mathcal{F}_{\alpha, \beta, 0}$ and any n independent fixed $A>0$; if we let $f_{A}(x)=\max (\min (f(x), A),-A)$, then it is clear that $f_{A}(x) \in \mathcal{F}_{\alpha, \alpha+\beta, 0}$. Therefore Theorem 1.2 implies that as $n \rightarrow \infty$,

$$
\mathbb{E}_{S_{n}} \mathbb{E}_{x, y} \phi\left(f_{\gamma, C}(\hat{w}, x), y\right) \leq \mathbb{E}_{x, y} \phi\left(f_{A}(x), y\right)+o(1)
$$

Since A is arbitrary, we let $A \rightarrow \infty$ to obtain the desired result.

References

[1] Tong Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 15:1397-1437, 2003.

