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Abstract

In this paper we aim to train deep neural networks for rapid visual recognition.
The task is highly challenging, largely due to the lack of a meaningful regular-
izer on the functions realized by the networks. We propose a novel regularization
method that takes advantage of kernel methods, where an oracle kernel function
represents prior knowledge about the recognition task of interest. We derive an ef-
ficient algorithm using stochastic gradient descent, and demonstrate encouraging
results on a wide range of recognition tasks, in terms of both accuracy and speed.

1 Introduction

Visual recognition remains a challenging task for machines. This difficulty stems from the large
pattern variations under which a recognition system must operate. The task is extremely easy for a
human, largely due to the expressive deep architecture employed by human visual cortex systems.
Deep neural networks (DNNs) are argued to have a greater capacity to recognize a larger variety of
visual patterns than shallow models, because they are considered biologically plausible.

However, training deep architectures is difficult because the large number of parameters to be tuned
necessitates an enormous amount of labeled training data that is often unavailable. Several authors
have recently proposed training methods by using unlabeled data. These methods perform a greedy
layer-wise pre-training using unlabeled data, followed by a supervised fine-tuning [9, 4, 15]. Even
though the strategy notably improves the performance, to date, the best reported recognition accu-
racy on popular benchmarks such as Caltech101 by deep models is still largely behind the results of
shallow models.

Beside using unlabeled data, in this paper we tackle the problem by leveraging additionalprior
knowledge. In the last few decades, researchers have developed successful kernel-based systems
for a wide range of visual recognition tasks. Those sensibly-designed kernel functions provide
an extremely valuable source of prior knowledge, which we believe should be exploited in deep
learning. In this paper, we propose aninformativekernel-based regularizer, which makes it possible
to train DNNs with prior knowledge about the recognition task.

Computationally, we propose to solve the learning problem usingstochastic gradient descent(SGD),
as it is thede factomethod for neural network training. To this end we transform the kernel regu-
larizer into a loss function represented as a sum of costs by individual examples. This results in a
simple multi-task architecture where a number of extra nodes at the output layer are added to fit a
set of auxiliary functions automatically constructed from the kernel function.

We apply the described method to train convolutional neural networks (CNNs) for a wide range of
visual recognition tasks, including handwritten digit recognition, gender classification, ethnic origin
recognition, and object recognition. Overall our approach exhibits excellent accuracy and speed on
all of these tasks. Our results show that incorporation of prior knowledge can boost the performance
of CNNs by a large margin when the training set is small or the learning problem is difficult.
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2 DNNs with Kernel Regularization

In our setting, the learning model, a deep neural network (DNN), aims to learn a predictive function
f : X → R that can achieve a low expected discrepancyE[`(y, f(x))] over the distributionp(x, y).
In the simplest caseY = {−1, 1} and`(·, ·) is a differentiable hinge loss. Based on a set of labeled
examples[(xi, yi)]ni=1, the learning is by minimizing a regularized loss

L(β, θ) =
n∑
i=1

`
(
yi, β

>
1 φi + β0

)
+ λ‖β1‖2 (1)

whereφi = φ(xi; θ) mapsxi to q-dimensional hidden units via a nonlinear deep architecture
with parametersθ, including the connection weights and biases of all the intermediate layers,
β = {β1, β0}, β1 includes all the parameters of the transformation from the last hidden layer to
the output layer,β0 is a bias term,λ > 0, and‖a‖2 = tr(a>a) is the usual weight decay reg-
ularization. Applying the well-known representor theorem, we derive the equivalence to a kernel
system1

L(α, β0, θ) =
n∑
i=1

`

yi, n∑
j=1

αjKi,j + β0

 + λ
n∑

i,j=1

αiαjKi,j (2)

where the kernel is computed by

Ki,j = 〈φ(xi; θ), φ(xj ; θ)〉 = φ>i φj

We assume the network is provided with some prior knowledge, in the form of anm × m kernel
matrixΣ, computed onn labeled training data, plus possibly additionalm−n unlabeled dataif m >
n. We exploit this prior knowledge via imposing a kernel regularization onK(θ) = [Ki,j ]mi,j=1, such
that the learning problem seeks

Problem 2.1.

min
β,θ

L(β, θ) + γΩ(θ) (3)

whereγ > 0 andΩ(θ) is defined by

Ω(θ) = tr
[
K(θ)−1Σ

]
+ log det[K(θ)] (4)

This is a case ofsemi-supervised learningif m > n. ThoughΩ is non-convex w.r.t.K, it has a
unique minimum atK = Σ if Σ � 0, suggesting that minimizingΩ(θ) encouragesK to approach
Σ. The regularization can be explained from an information-theoretic perspective. Letp(f |K) and
p(f |Σ) be two Gaussian distributionsN (0,K) andN (0,Σ).2 Ω(θ) is related to the KL-divergence
DKL[p(f |Σ)‖p(f |K)]. Therefore, minimizingΩ(θ) forces the two distributions to be close. We
note that the regularization does not requireΣ to be positive definite — it can be semidefinite.

3 Kernel Regularization via Stochastic Gradient Descent

The learning problem in Eq. (3) can be solved by using gradient-based methods. In this paper we
emphasize large-scale optimizations using stochastic gradient descent (SGD), because the method
is fast when the sizem of total data is large and backpropagation, a typical SGD, has been thede
factomethod to train neural networks for large-scale learning tasks.

SGD considers the problem where the optimization cost is the sum of the local cost of each indi-
vidual training example. A standard batch gradient descent updates the model parameters by using
the true gradient summed over the whole training set, while SGD approximates the true gradient by
the gradient caused by a single random training example. Therefore, the parameters of the model

1In this paper we slightly abuse the notation, i.e., we useL to denote different loss functions. However their
meanings should be uniquely identified by checking the input parameters.

2From a Gaussian process point of view, a kernel function defines the prior distribution of a functionf , such
that the marginal distribution of the function valuesf on any finite set of inputs is a multivariate Gaussian.
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are updated after each training example. For large data sets, SGD is often much faster than batch
gradient descent.

However, because the regularization term defined by Eq. (4) does not consist of a cost function that
can be expressed as a sum (or an average) over data examples, SGD is not directly applicable. Our
idea is to transform the problem into an equivalent formulation that can be optimized stochastically.

3.1 Shrinkage on the Kernel Matrix

We consider a large-scale problem where the data sizem may grow over time, while the size of the
last hidden layer (q) of the DNN is fixed. Therefore the computed kernelK can be rank deficient.
In order to ensure that the trace term inΩ(θ) is well-defined, and that the log-determinant term is
bounded from below, we instead useK+ δI to replaceK in Ω(θ), whereδ > 0 is a small shrinkage
parameter andI is an identity matrix. Thus the log-determinant acts on a much smallerq×q matrix3

log det(K + δI) = log det
(
Φ>Φ + δI

)
+ const

whereΦ = [φ1, . . . , φm]> andconst = (m − q) · log δ. Omitting all the irrelevant constants, we
then turn the kernel regularization into

Ω(θ) = tr
[
(ΦΦ> + δI)−1Σ

]
+ log det(Φ>Φ + δI) (5)

The kernel shrinkage not only remedies the ill-posedness, but also yields other conveniences in our
later development.

3.2 Transformation of the Log-determinant Term

By noticing thatΦ>Φ =
∑n
i=1 φiφ

>
i is a sum of quantities over data examples, we move it outside

of the log determinant for the convenience of SGD.

Theorem 3.1. Considerminθ{L(θ) = h(θ) + g(a)}, whereg(·) is concave anda ≡ a(θ) is a
function ofθ, if its local minimum w.r.t.θ exists, then the problem is equivalent to

min
θ,ψ

{
L(θ, ψ) = h(θ) + a(θ)>ψ − g•(ψ)

}
(6)

whereg•(ψ) is the conjugate function ofg(a), i.e.g•(ψ) = mina{ψ>a− g(a)}.4

Proof. For a concave functiong(a), the conjugate function of its conjugate function is itself,
i.e., g(a) = minψ{a>ψ − g•(ψ)}. Sinceg•(ψ) is concave,a>ψ − g•(ψ) is convex w.r.t. ψ
and has the unique minimumg(a). Therefore minimizingL(θ, ψ) w.r.t. θ andψ is equivalent to
minimizingL(θ) w.r.t. θ.

Since log-determinant is concave forq × q positive definite matricesA, the conjugate function
of log det(A) is log det(Ψ) + q. We can use the above theorem to transform any loss function
containinglog det(A) into another loss, which is an upper bound and involvesA in a linear term.
Therefore the log-determinant in Eq. (5) is turned into a variational representation

log det
(
Φ>Φ + δI

)
= min

Ψ∈S+
q

[
m∑
i=1

φ>i Ψφi + δ · tr(Ψ)− log det(Ψ) + const

]

whereΨ ∈ S+
q is aq × q positive definite matrix, andconst = −q. As we can see, the upper bound

is a convex function of auxiliary variablesΨ and more importantly, it amounts to a sum of local
quantities caused by each of them data examples.

3Hereafter in this paper, with a slight abuse of notation, we use “const” in equations to summarize the terms
irrelevant to the variables of interest.

4If g(a) is convex, its conjugate function isg◦(ψ) = maxa{ψ>a− g(a)}.
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3.3 Transformation of the Trace Term

We assume that the kernel matrixΣ is presented in a decomposed formΣ = UU>, with U =
[u1, . . . , um]>, ui ∈ Rp, andp ≤ m. We have found that the trace term can be cast as a variational
problem by introducing anq × p auxiliary variable matrixη.

Proposition 3.1. The trace term in Eq. (5) is equivalent to a convex variational representation

tr
[
(ΦΦ> + δI)−1Σ

]
= min
η∈Rq×p

[
m∑
i=1

‖ 1√
δ
ui − η>φi‖2 + δ‖η‖2F

]

Proof. We first obtain the analytical solutionη∗ = 1√
δ
(Φ>Φ + δI)−1Φ>U , where the variational

representation reaches its unique minimum. Then, plugging it back into the function, we have

tr
[
1
δ
U>U − 2

1√
δ
U>Φη∗ + η∗>Φ>Φη∗ +

1
δ
U>Φ(Φ>Φ + δI)−2Φ>U

]
=

1
δ
tr

[
U>U − U>Φ(Φ>Φ + δI)−1Φ>U

]
= tr

[
(ΦΦ> + δI)−1UU>

]
where the last step is derived by applying the Woodbury matrix identity.

Again, we note that the upper bound is a convex function ofη, and consists of a sum of local costs
over data examples.

3.4 An Equivalent Learning Framework

Combining the previous results, we obtain the convex upper bound for the kernel regularization
Eq. (5), which amounts to a sum of costs over examples under some regularization

Ω(θ) ≤

[
L(η,Ψ, θ) =

m∑
i=1

(
‖ 1√

δ
ui − η>φi‖2 + φ>i Ψφi

)
+ δ‖η‖2F + δ · tr(Ψ)− log det(Ψ)

]
where we omit all the terms irrelevant toη,Ψ andθ. L(η,Ψ, θ) is convex w.r.t.η andΨ, and has
a unique minimumΩ(θ), hence we can replaceΩ(θ) by instead minimizing the upper bound and
formulate an equivalent learning problem

min
β,η,Ψ,θ

[
L(β, η,Ψ, θ) = L(β, θ) + γL(η,Ψ, θ)

]
(7)

Clearly this new optimization can be solved by SGD.

When applying the SGD method, each step based on one example needs to compute the inverse of
Ψ. This can be computationally unaffordable when the dimensionality is large (e.g.q > 1000) —
remember that the efficiency of SGD is dependent on the lightweight of each stochastic update. Our
next result suggests that we can dramatically reduce this complexity fromO(q3) toO(q).
Proposition 3.2. Eq. (5) is equivalent to the convex variational problem

Ω(θ) = min
η,ψ

[
m∑
i=1

(
‖ 1√

δ
ui − η>φi‖2 + ψ>φ2

i

)
+ δ‖η‖2F + δ · ψ>e−

q∑
k=1

logψk

]
(8)

whereψ = [ψ1, . . . , ψq]>, ande = [1, . . . , 1]>.

Proof. There is an ambiguity of the solutions up to rotations. Suppose{β∗,Φ∗, η∗,Ψ∗} is an op-
timal solution set, a transformationβ∗ ← Rβ∗, Φ∗ ← RΦ∗, η∗ ← Rη∗, andΨ∗ ← RΨ∗R>

results in the same optimality ifR>R = I. Since there always exists anR to diagonalizeΨ∗, we
can pre-restrictΨ to be a diagonal positive definite matrixΨ = diag[ψ1, . . . , ψq], which does not
change our problem and gives rise to Eq. (8).

We note that the variational form is convex w.r.t. the auxiliary variablesη andψ. Therefore we can
formulate the whole learning problem as
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Problem 3.1.

min
β,η,ψ,θ

[
L(β, η, ψ, θ) =

1
n
L1(β, θ) +

γ

mn
L2(η, θ) +

γ

mn
L3(ψ, θ)

]
(9)

whereL1(β, θ) is defined by Eq. (1), and

L2(η, θ) =
m∑
i=1

‖ 1√
δ
ui − η>φi‖2 + δ‖η‖2F

L3(ψ, θ) =
m∑
i=1

ψ>φ2
i + δ · ψ>e−

q∑
k=1

logψk

To ensure the estimator ofβ andθ is consistent, the effect of regularization should vanish asn→∞.
Therefore we intentionally normalizeL2(η, θ) andL3(ψ, θ) by 1/m. The overall loss function is
averaged over then labeled examples, consisting ofthree loss functions: the main classification task
L1(β, θ), an auxiliary least-squares regression problemL2(η, θ), and an additional regularization
termL3(ψ, θ), which can be interpreted as another least-squares problem. Since each of the loss
functions amounts to a summation of local costs caused by individual data examples, the whole
learning problem can be conveniently implemented by SGD, as described in Algorithm 1.

In practice, the kernel matrixΣ = UU> that represents domain knowledge can be obtained in
three different ways: (i) In the easiest case,U is directly available by computing some hand-crafted
features computed from the input data, which corresponds to a case of a linear kernel function; (ii)
U can be results of some unsupervised learning (e.g. the self-taught learning [14] based on sparse
coding), applied on a large set of unlabeled data; (iii) If a nonlinear kernel function is available,U
can be obtained by applying incomplete Cholesky decomposition on anm×m kernel matrixΣ. In
the third case, whenm is so large that the matrix decomposition cannot be computed in the main
memory, we apply the Nyström method [19]: We first randomly samplem1 examplesp < m1 < m,
such that the computed kernel matrixΣ1 can be decomposed in the memory. LetV DV > be thep-
rank eigenvalue decomposition ofΣ1, then thep-rank decomposition ofΣ can be approximated by
Σ ≈ UU>, U = Σ:,1V D

− 1
2 , whereΣ:,1 is them×m1 kernel matrix between all them examples

and the subset of sizem1.

Algorithm 1 Stochastic Gradient Descent
repeat

Generate a numbera from uniform distribution[0, 1]
if a < n

m+n
then

Randomly pick a samplei ∈ {1, · · · , n} for L1, and update parameter by

[β, θ]← [β, θ]− ε∂L1(xi, β, θ)

∂[β, θ]

else
Randomly pick a samplei ∈ {1, · · · ,m} for L2, and update parameter by

[η, ψ, θ]← [η, ψ, θ]− ε

m

∂[L2(xi, η, θ) + L3(xi, ψ, θ)]

∂[η, ψ, θ]

end if
until convergence

4 Visual Recognition by Deep Learning with Kernel Regularization

In the following, we apply the proposed strategy to train a class of deep models and convolutional
neural networks (CNNs, [11]) for a range of visual recognition tasks including digit recognition on
MNIST dataset, gender and ethnicity classification on the FRGC face dataset, and object recognition
on the Caltech101 dataset. In each of these tasks, we choose a kernel function that has been reported
to have state-of-the-art or otherwise good performances in the literature. We will see whether a
kernel-regularizer can improve the recognition accuracy of the deep models, and how it is compared
with the support vector machine (SVM) using the exactly the same kernel.
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Table 1: Percentage error rates of handwritten digit recognition on MNIST
Training Size 100 600 1000 3000 60000
SVM (RBF) 22.73 8.53 6.58 3.91 1.41
SVM (RBF, Nystr̈om) 24.73 9.15 6.92 5.51 5.16
SVM (Graph) 5.21 3.74 3.46 3.01 2.23
SVM (Graph, Cholesky) 7.17 6.47 5.75 4.28 2.87
CNN 19.40 6.40 5.50 2.75 0.82
kCNN (RBF) 14.49 3.85 3.40 1.88 0.73
kCNN (Graph) 4.28 2.36 2.05 1.75 0.64
CNN (Pretrain) [15] − 3.21 − − 0.64
EmbedO CNN [18] 11.73 3.42 3.34 2.28 −
EmbedI5 CNN [18] 7.75 3.82 2.73 1.83 −
EmbedA1 CNN [18] 7.87 3.82 2.76 2.07 −

Throughout all the experiments, “kCNN” denotes CNNs regularized by nonlinear kernels, processed
by either Cholesky or Nyström approximation, with parametersp = 600, m1 = 5000, andm the
size of each whole data set. The obtainedui are normalized to have unitary lengths.λ andδ are
fixed by1. The remaining two hyperparameters are: the learning ratesε = {10−3, 10−4, 10−5} and
the kernel regularization weightsγ = {102, 103, 104, 105}. Their values are set once for each of the
4 recognition tasks based on a 5-fold cross validation using 500 labeled examples.

4.1 Handwritten Digit Recognition on MNIST Dataset

The data contains a training set with60000 examples and a test set with10000 examples. The CNN
employs50 filters of size7× 7 on34× 34 input images, followed by down-sampling by1/2, then
128 filters of size5×5, followed by down-sampling by1/2, and then200 filters of size5×5, giving
rise to200 dimensional features that are fed to the output layer. Two nonlinear kernels are used: (1)
RBF kernel, and (2) Graph kernel on 10 nearest neighbor graph [6]. We perform600-dimension
Cholesky decomposition on the whole70000× 70000 graph kernel because it is very sparse.

In addition to using the whole training set, we train the models on100, 600, 1000 and3000 random
examples from the training set and evaluate the classifiers on the whole test set, and repeat each
setting by 5 times independently. The results are given in Tab. 1. kCNNs effectively improve over
CNNs by leveraging the prior knowledge, and also outperform SVMs that use the same kernels. The
results are competitive with the state-of-the-art results by [15], and [18] of a different architecture.

4.2 Gender and Ethnicity Recognition on FRGC Dataset

The FRGC 2.0 dataset [13] contains568 individuals’ 14714 face images under various lighting
conditions and backgrounds. Beside person identities, each image is annotated with gender and
ethnicity, which we put into3 classes, “white”, “asian”, and “other”. We fix114 persons’3014
images (randomly chosen) as the testing set, and randomly selected5%, 10%, 20%, 50%, and “All”
images from the rest454 individuals’ 11700 images. For each training size, we randomize the
training data5 times and report the average error rates.

In this experiment, CNNs operate on images represented by R/G/B planes plus horizontal and ver-
tical gradient maps of gray intensities. The5 input planes of size140 × 140 are processed by16
convolution filters with size16 × 16, followed by max pooling within each disjoint5 × 5 neigh-
borhood. The obtained16 feature maps of size25 × 25 are connected to the next layer by256
filters of size6 × 6, with 50% random sparse connections, followed by max pooling within each
5 × 5 neighborhood. The resulting256 × 4 × 4 features are fed to the output layer. The nonlinear
kernel used in this experiment is the RBF kernel computed directly on images, which has demon-
strated state-of-the-art accuracy for gender recognition [3]. The results shown in Tab. 2 and Tab. 3
demonstrate that kCNNs significantly boost the recognition accuracy of CNNs for both gender and
ethnicity recognition. The difference is prominent when small training sets are presented.

4.3 Object Recognition on Caltech101 Dataset

Caltech101 [7] contains9144 images from 101 object categories and a background category. It is
considered one of the most diverse object databases available today, and is probably the most popular
benchmark for object recognition. We follow the common setting to train on 15 and 30 images per
class and test on the rest. Following [10], we limit the number of test images to 30 per class. The
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Table 2: Percentage error rates of gender recognition on FRGC
Training Size 5% 10% 20% 50% All
SVM (RBF) 16.7 13.4 11.3 9.1 8.6
SVM (RBF, Nystr̈om) 20.2 14.3 11.6 9.1 8.8
CNN 61.5 17.2 8.4 6.6 5.9
kCNN 17.1 7.2 5.8 5.0 4.4

Table 3: Percentage error rates of ethnicity recognition on FRGC
Training Size 5% 10% 20% 50% All
SVM (RBF) 22.9 16.9 14.1 11.3 10.2
SVM (RBF, Nystr̈om) 24.7 20.6 15.8 11.9 11.1
CNN 30.0 13.9 10.0 8.2 6.3
kCNN 15.6 8.7 7.3 6.2 5.8

recognition accuracy was normalized by class sizes and evaluated over 5 random data splits. The
CNN has the same architecture as the one used in the FRGC experiment. The nonlinear kernel is the
spatial pyramid matching (SPM) kernel developed in [10].

Tab. 4 shows our results together with those reported in [12, 15] using deep hierarchical architec-
tures. The task is much more challenging than the previous three tasks for CNNs, because in each
category the data size is very small while the visual patterns are highly diverse. Thanks to the reg-
ularization by SPM kernel, kCNN dramatically improves the accuracy of CNN, and outperforms
SVM using the same kernel. This is perhaps the best performance by (trainable and hand-crafted)
deep hierarchical models on the Caltech101 dataset. Some filters trained with and without kernel
regularization are visualized in Fig. 1, which helps to understand the difference made by kCNN.

5 Related Work, Discussion, and Conclusion
Recent work on deep visual recognition models includes [17, 12, 15]. In [17] and [12] the first layer
consisted of hard-wired Gabor filters, and then a large number of patches were sampled from the
second layer and used as the basis of the representation which was then used to train a discriminative
classifier.

Deep models are powerful in representing complex functions but very difficult to train. Hinton and
his coworkers proposed training deep belief networks with layer-wise unsupervised pre-training,
followed by supervised fine-tuning [9]. The strategy was subsequently studied for other deep mod-
els like CNNs [15], autoassociators [4], and for document coding [16]. In recent work [18], the
authors proposed training a deep model jointly with an unsupervised embedding task, which led to
improved results as well. Though using unlabeled data too, our work differs from previous work at
the emphasis on leveraging the prior knowledge, which suggests that it can be combined with those
approaches, including neighborhood component analysis [8], to further enhance the deep learning.
This work is also related to transfer learning [2] that used auxiliary learning tasks to learn a linear
feature mapping, and more directly, our previous work [1], which created pseudo auxiliary tasks
based on hand-craft image features to train nonlinear deep networks.

One may ask, why bother training with kCNN, instead of simply combining two independently
trained CNN and SVM systems? The reason is computational speed – kCNN pays an extra cost to
exploit a kernel matrix in the training phase, but in the prediction phase the system uses CNN alone.

(a) CNN-Caltech101 (b) kCNN-Caltech101

Figure 1: First-layer filters on the B channel, learned from Caltech101 (30 examples per class)
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Table 4: Percentage accuracy on Caltech101
Training Size 15 30 Training Size 15 30
SVM (SPM) [10] 54.0 64.6 CNN (Pretrain) [15] − 54.0
SVM (SPM, Nystr̈om) 52.1 63.1 CNN 26.5 43.6
HMAX [12] 51.0 56.0 kCNN 59.2 67.4

In our Caltech101 experiment, the SVM (SPM) needed several seconds to process a new image on
a PC with a 3.0 GHz processor, while kCNN can process about40 images per second. The latest
record on Caltech101 was based on combining multiple kernels [5]. We conjecture that kCNN could
be further improved by using multiple kernels without sacrificing recognition speed.

To conclude, we proposed using kernels to improve the training of deep models. The approach was
implemented by stochastic gradient descent, and demonstrated excellent performances on a range of
visual recognition tasks. Our experiments showed that prior knowledge could significantly improve
the performance of deep models when insufficient labeled data were available in hard recognition
problems. The trained model was much faster than kernel systems for making predictions.

Acknowledgment: We thank the reviewers and Douglas Gray for helpful comments.
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