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ABSTRACT
Outlier detection and ensemble learning are well established re-
search directions in data mining yet the application of ensemble
techniques to outlier detection has been rarely studied. Building an
ensemble requires learning of diverse models and combining these
diverse models in an appropriate way. We propose data perturba-
tion as a new technique to induce diversity in individual outlier de-
tectors as well as a rank accumulation method for the combination
of the individual outlier rankings in order to construct an outlier
detection ensemble. In an extensive evaluation, we study the im-
pact, potential, and shortcomings of this new approach for outlier
detection ensembles. We show that this ensemble can significantly
improve over weak performing base methods.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

Keywords
outlier detection; ensemble

1. INTRODUCTION
The main outlier methods proposed in the literature, aside from

variants tackling efficiency issues, differ in the way they model out-
liers and, thus, in the assumptions they implicitly or explicitly rely
on. Statistical methods for outlier detection (also: outlier identifica-
tion or rejection) are based on assumptions on the nature of the dis-
tributions of objects. The classical textbook by Barnett and Lewis
[6] discusses numerous tests for different distributions. The tests
are optimized for each distribution and depend on: the specific pa-
rameters of the corresponding distribution; the number of expected
outliers; and the space where to expect an outlier. A recent discus-
sion of different statistical techniques is presented by Rousseeuw
and Hubert [38]. A broader overview of outlier detection methods
for modern applications has been provided by Chandola et al. [12].

In this paper, we focus on representative techniques based on dis-
tances and density estimates in Euclidean data spaces. The distance-
based notion of outliers (DB-outlier) [27] was the first database-
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oriented approach. Variants consider the distances to the k nearest
neighbors of each object and use these distances to rank the objects
[36], or use the sum of distances to all points within the set of k
nearest neighbors (called the “weight”) as an outlier degree [5].

The so-called “local” approaches, e.g. LOF [10], consider ratios
between the local density around an object and the local density
around its neighboring objects. LDOF [47] is comparable in per-
formance to classical kNN-based outlier detection but reported to
be less sensitive to parameter values. LoOP [28] uses a density es-
timation based on the distance distribution of all nearest neighbors
and defines the local outlier score as a probability. LOCI [34] is an-
other variant on LOF [10], comparing the local density of an object
to its neighbors at multiple radii.

DB-outlier and the variants using the k nearest neighbor dis-
tances are also known as “distance-based” methods, while LOF and
its variants are known as “density-based” methods. This differenti-
ation, however, is only superficial [41]. Both, “distance-based” and
“density-based” approaches, basically aim at providing a more or
less refined estimate of the density around some point.

Statistical approaches fit certain distributions to the data, and es-
timate the parameters of the distribution. However, these parame-
ters (as, e.g., mean, standard deviation, or covariances) are rather
sensitive to outliers. Possible effects of outliers on the parameter
estimation are masking and swamping. Outliers mask their own
presence by influencing the values of the distribution parameters
(resulting in false negatives), or swamp inliers to appear as outly-
ing due to the influenced parameters (resulting in false positives)
[35, 7, 6, 21].

In contrast to statistical approaches, the density estimates used
by “distance-based” and “density-based” algorithms are non-para-
metric. They do not assume a specific distribution but just estimate
the density level. These estimates, however, are based on merely
one sample (the data set) drawn from the (unknown) density dis-
tribution. Even for large data sets, especially in high-dimensional
data spaces [50], the sample size can be too small since the data
are often based on a complex mixture of distributions whereas dif-
ferent components are represented by only part of the data. Effects
similar to masking and swamping can here occur, e.g., if the den-
sity estimates are misled by local errors in the density estimates
induced by random variations such as “gaps” in the sample instead
of being actually variations in the underlying density distribution.
Re-sampling would be the method of choice if it only would be
possible to draw new samples.

As a way to use the available data in the unsupervised scenario to
obtain more reliable density estimates, we approximate re-sampling
by bootstrapping i perturbed data sets (i.e., we change the attribute
values of each point by adding a noise component of some small,
randomized, amount), and run the outlier detection algorithm of



our choice on all the i perturbed data sets. This way, we can keep
track of the identity of each data point and aggregate the scores and
the rank positions of each point. We then combine the resulting i
outlier rankings (or scorings) to get an integrated, more stable and
reliable outlier ranking (or scoring) of the data.

From the point of view of learning theory, this could also be seen
as an ensemble approach to outlier detection [4], where diversity of
individual voters is introduced by means of perturbation of data.
Open questions for the use of ensemble techniques for outlier de-
tection have been discussed recently [48], pointing out the issue of
fundamental principles for creating diversity and the ongoing dis-
cussion regarding combinations of outlier rankings. Here, we add
perturbation as a fundamentally new way of creating diversity for
an ensemble compared to the established ways and discuss a new
way of combining outlier rankings.

Both aspects, the approximation of improved density-estimates,
and the theoretical findings of ensemble-learning when individ-
ual voters are diverse but still accurate, explain our findings that
this method is improving, sometimes substantially, over the cor-
responding basic outlier detector. The proposed principle is very
fundamental and flexible and can be combined with various con-
ventional outlier detection techniques, as we will demonstrate in
the experiments.

In the following, we discuss related work w.r.t. data perturbation
and w.r.t. ensemble learning for outlier detection (Section 2). We
reason about the technical implications of data perturbation and its
potential to improve local density estimates (Section 3). We dis-
cuss the combination of single outlier detection instances obtained
on perturbed data and introduce a novel rank combination proce-
dure for outlier rankings to construct an outlier detection ensemble
(Section 4). In an extensive evaluation we show the superiority
of the new rank combination procedure as well as the potential of
data perturbation for improvement of outlier ensembles but we also
point out the risks of this technique (Section 5). We conclude the
paper in Section 6.

2. RELATED WORK

2.1 Perturbation
As an application of his clustering validity index, Rand sug-

gested to compare clustering results on perturbed data to clustering
results on the original data [37]. This procedure can assess the sta-
bility or robustness of clustering results. If the original clustering
and the clustering obtained from the perturbed data are very differ-
ent, the original clustering is unlikely to be a valid, reliable result.
Despite the obvious usefulness of this procedure, data perturbation
has not been thoroughly explored in data mining. Rand’s proposal
has been used occasionally for evaluation in (mainly biological)
clustering research [9, 23, 26, 31]. The impact of “accidental”
data perturbation on spectral clustering has been studied, consid-
ering data preprocessing techniques such as filtering, quantization,
or compression, i.e., techniques used to speed-up cluster compu-
tation but essentially resulting in a certain degree of perturbation
[24]. Data perturbation after deriving the clustering on the original
data has been used to assess how stable a classifier performs, that
was trained on the clustering [16]. Perturbation has not been used
for outlier detection in any way.

2.2 Outlier Detection Ensembles
The first approach to improve outlier detection by ensemble tech-

niques was “feature bagging” [30], combining different results of
the same algorithm (namely LOF [10]) applied to different feature
subsets. Feature bagging is a common procedure to induce diver-

sity of ensemble members in ensemble classification [11] or en-
semble clustering [17, 44, 8]. For combination of the outlier scores
obtained on different feature subsets, Lazarevic and Kumar [30]
proposed two methods. First, they apply a normalization by rank-
ing as a breadth-first traversal through all the outlier rankings ob-
tained from the different feature subsets. Second, they compute the
cumulative sum of the different scores. Both combination methods
are straightforward and have some severe drawbacks. The breadth-
first traversal rank combination ranks those objects ranked on a top
position by any one of the n different ensemble members also on a
top position. This way, the first positions of each individual rank-
ing are strongly emphasized and errors of single ensemble members
cannot be outweight by even all other detectors being correct. This
drawback is rendering this combination method ineffective w.r.t.
one of the most fundamental benefits that one can expect from an
ensemble method at all: the correction of errors that are commit-
ted by single ensemble members. The second combination method,
score aggregation, relies heavily on the scorings being comparable.
This problem practically rules out the combination of different base
methods or, for many methods, different parametrizations (e.g., dif-
ferent k for a kNN-distance-based method). Even when using the
same method as base outlier detector and identical parametrization,
outlier scores obtained from different subspaces could vary consid-
erably if some subspaces have different scales. The ensemble could
then be biased by just one of the feature bags.

It has been pointed out recently that some subspace outlier de-
tection techniques could also be seen as ensemble techniques but
that they also face similar challenges regarding the combination of
scores from different subspaces [4, 50, 48].

Subsequent research on outlier detection ensembles focused on
this very same issue of comparability of scores for combination.
Sigmoid functions and mixture modeling have been applied to fit
outlier scores provided by different detectors into comparable prob-
ability values [20], using different values for k of the kNN distance
as an outlier score to induce diversity. Another method [33] uses
scaling by standard deviation of outlier scores and induces diversity
in the applied base detectors by feature bagging.

Statistical reasoning motivated normalization of scores of differ-
ent outlier detection methods into a unified value range in [0, 1], en-
abling the combination of different outlier detection methods into
one ensemble [29]. Schubert et al. [39] proposed a similarity mea-
sure to appropriately compare different outlier rankings (based on
scores) and to allow for the assessment of actual diversity of dif-
ferent outlier detectors. As an application, they propose a greedy
ensemble approach demonstrating the importance of diversity for
the performance of an ensemble. In all these papers, though outlier
detection ensembles have been discussed and improved, no new
method of inducing diversity has been pursued.

Using several instances of a randomized method was a principle
of diversity, although not studied for its impact, in the study on
isolation forests by Liu et al. [32]. Zimek et al. [49] used data
subsamples to learn diverse outlier models for an ensemble. Other
examples return to the approach of combining models learned with
different parameters. Schubert et al. [40] use generalized kernel
density estimates for adaptation to various datasets and combine
results from different parametrization of their method. Likewise,
Dang et al. [13] aggregate over different parameter values in their
evaluation, hence essentially building an ensemble for the tested
methods.

Aside from the simple breadth-first traversal strategy of the orig-
inal feature bagging approach [30], all subsequent ensemble meth-
ods combined the individual outlier rankings by some aggregation
(sum or average) of the individual scores.



As discussed in a recent position paper [48], methods to induce
diversity and methods to combine outlier rankings are both open
issues and research is in an early stage. Here, we contribute a new
approach to each of these two fundamental open issues.

3. PERTURBATION FOR OUTLIER DETEC-
TION

3.1 Motivation
At first sight, it may seem counterintuitive that, while much ef-

fort is spent to reduce or eliminate noise in data sets, adding noise
to data should actually help in the data mining process. However,
adding controlled noise is strongly motivated by theory on ensem-
ble learning. In classification, building ensembles combining sev-
eral single classifiers to gain an improved effectiveness has a rich
tradition and a sound theoretical background [14, 45, 11]. The fun-
damental lessons learned w.r.t. ensemble learning in classification
are that we have two basic requirements for an ensemble to im-
prove over the contained base-classifiers: the base classifiers, i.e.,
the members of the ensemble, need to be (i) accurate (i.e., at least
better than random) and (ii) diverse (i.e., making different errors
on new instances). If several individual classifiers were not diverse,
then all of them will be wrong whenever one of them is wrong. This
way, nothing is gained by combining them. On the other hand, if
the errors made by the ensemble members were uncorrelated, more
members may be correct while some members are wrong. There-
fore, a majority vote by an ensemble may be also correct. It is clear
that each ensemble member should be at least somehow meaningful
in order to get meaningful results out of their combination. Hence,
a key for building good ensembles is to use ensemble members that
are diverse in the sense that they make different (ideally: uncorre-
lated) errors (if any).

3.2 Theoretical Justification
In outlier detection, adding noise in a controlled way now has

actually the potential to introduce diversity where the single outlier
detection method is likely to make wrong decisions. The magni-
tude of the added noise should be small enough to avoid swamping
of clear inliers or masking of clear outliers, but we argue that the
borderline cases can be expected to benefit from diversified deci-
sions. Considering the case of global outliers, let us assume we
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Figure 1: Relationship of Density and borderline points

have f(x) as the true, smooth probability density function under-
lying our dataset D, and a density threshold θ, to discern inliers I
and outliers O (see Figure 1), i.e.,

f(x) < θ ⇒ x ∈ O, and f(x) > θ ⇒ x ∈ I

(the case of f(x) = θ can be defined either way).
However, we do know only a sample X of the data and an esti-

mate of f(x) based onX , given by f̂X(x) = f(x)+vX(x), where
vX(x) is a random variable describing the error of the estimate due
to the finite sample. Assuming the error being independent of the
single datapoint x, we have f̂X(x) = f(x) + vX . Given a sample
X and an inlier x (x ∈ I), the probability that x is evaluated as a
false positive according to f̂X(x) is

P (f̂X(x) < θ) = P (f(x) + vX < θ).

Hence, independent of the distribution p(vX),

P (f̂X(x1) < θ) ≥ P (f̂X(x2) < θ)

if

f(x1)− θ ≤ f(x2)− θ,

i.e., if f(x1) ≤ f(x2) for x1, x2 ∈ I.
Analogously, the probability of an outlier x1 ∈ O to be erro-

neously deemed an inlier (i.e., the probability of x1 being a false
negative) is greater or equal to that of another outlier x2, i.e.,

P (f̂X(x1) > θ) ≥ P (f̂X(x2) > θ),

if

θ − f(x1) ≤ θ − f(x2),

i.e., if f(x1) ≥ f(x2) for x1, x2 ∈ O.
It follows that the probabilities of false positives and false nega-

tives are maximal for “borderline” points, i.e., points that are near
those values of x where f(x) is close to the threshold θ.

This reasoning can be extended to local outlier models by allow-
ing the constant threshold θ to adapt variably to local estimates.

As a consequence, the quality of the estimate f̂ of f (where the
true probability density function f is not known to us) decides over
success and failure of the outlier detection. Density estimates as
used by outlier detection algorithms in the area of database research
are based on the available data, which can be seen as a sample of
some underlying distribution. Even with a large data set the sample
size can be just too small to allow for a reliable and stable density
estimate in all regions of the data space. To obtain reliable and
stable density estimates, what one would like to do would be to
draw new and more samples, if one only had access to the true
probability density function.

Perturbation is an alternative that simulates multiple samples,
based on the one sample we have, although it imputes an error
vX(x) that actually cannot be expected to be independent of x.
However, it can be used if we are only interested in a good binary
classification between O and I for a given θ, rather than in a good
ranking inside these sets of outliers and inliers, respectively. Note
that the threshold level θ is used only implicitly, as it is, e.g., de-
fined for some data set by the annotated ground truth, or it remains
actually unknown. It is not a parameter of any method, rather an
evaluation procedure would evaluate the dichotomous problem if
outliers (density below θ) are ranked before inliers (density higher
than θ). We expect to rarely observe inversions in the original set
of a point x (O or I) for clear inliers and top outliers but to observe
inversions more frequently for borderline points.
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Figure 2: Effect of perturbation on outlier scores (LOF, k = 10), IDs of critical objects annotated.



Table 1: Example: effect of perturbation on ranking and rank accumulation
(a) Rankings (top-14) according to LOF on original data and on 5 instances of perturbation.

original pert. 1 pert. 2 pert. 3 pert. 4 pert. 5
ID LOF ID LOF ID LOF ID LOF ID LOF ID LOF

226 5.50 226 5.40 226 5.63 226 5.78 226 5.61 225 5.54
224 5.16 225 5.04 225 4.79 225 5.53 225 5.55 226 5.35
225 5.05 224 4.81 224 4.64 224 5.35 224 5.53 224 5.05
227 4.85 229 4.65 229 4.55 227 4.98 227 4.81 227 4.18
229 4.39 223 3.88 227 4.27 229 4.14 229 4.01 229 4.09
223 3.84 227 3.57 223 3.91 223 3.35 223 3.94 222 3.39
222 3.27 222 2.83 222 3.14 222 3.02 222 3.22 223 3.35
54 2.92 228 2.59 228 2.56 173 2.98 228 2.59 173 2.37

228 2.38 54 2.57 54 2.30 228 2.48 105 2.56 54 2.33
173 2.27 176 2.36 61 1.87 54 2.07 173 2.47 105 2.16
61 2.25 173 2.33 105 1.79 14 1.7 54 2.41 61 1.87

105 2.01 61 1.96 189 1.70 61 1.67 25 2.13 228 1.65
14 1.57 124 1.75 173 1.60 105 1.66 61 2.08 16 1.55
25 1.56 105 1.62 14 1.50 164 1.60 14 1.78 63 1.40

(b) Rank accumulation for combination of the LOF ranks on the perturbed data

among top- ∑
1,...,14ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14 0 0 0 0 0 0 0 0 0 0 1 1 1 3 6
16 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2
25 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3
54 0 0 0 0 0 0 0 0 3 4 5 5 5 5 27
61 0 0 0 0 0 0 0 0 0 1 2 4 5 5 17
63 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

105 0 0 0 0 0 0 0 0 1 2 3 3 4 5 18
124 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2
164 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
173 0 0 0 0 0 0 0 2 2 3 4 4 5 5 25
176 0 0 0 0 0 0 0 0 0 1 1 1 1 1 5
189 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3
222 0 0 0 0 0 1 5 5 5 5 5 5 5 5 41
223 0 0 0 0 1 4 5 5 5 5 5 5 5 5 45
224 0 0 5 5 5 5 5 5 5 5 5 5 5 5 60
225 1 5 5 5 5 5 5 5 5 5 5 5 5 5 66
226 4 5 5 5 5 5 5 5 5 5 5 5 5 5 69
227 0 0 0 3 4 5 5 5 5 5 5 5 5 5 52
228 0 0 0 0 0 0 0 3 4 4 4 5 5 5 30
229 0 0 0 2 5 5 5 5 5 5 5 5 5 5 52

Sampling has been used in ensemble clustering to induce diver-
sity. There, different subsamples of the data set have been clustered
and the resulting clusterings are combined to a consensus clustering
[43, 15, 19, 22]. In these cases, however, each re-sampled dataset
is smaller than the original data set or, if it is not smaller in case of
sampling with replacement, at least does not contain more informa-
tion to estimate the density. The new samples are just subsamples
of the original sample, not re-drawn from the (unknown) under-
lying distribution. The fundamental difference of clustering and
outlier detection in this respect is that clustering is interested in the
overall structure of the data set while outlier detection is specifi-
cally interested in identifying and filtering out single and by defini-
tion rare data points that are not even guaranteed to be present. Out-
liers are most likely not contained in a sub-sample and would not
even be expected to be reproduced by a re-sampling based on the
statistical properties of the data set as a whole (e.g., as determined
by sophisticated density estimators like kernel density estimates).

3.3 Practical Example
To illustrate how perturbation, i.e., adding noise, can improve

outlier detection, consider the toy example in Figure 2. The original
data set (Figure 2(a)) consists of a Gaussian cluster (red) and 8
uniformly distributed outliers (yellow). The outliers far from the
cluster are easy to detect (we use LOF [10] and the visualization
of ELKI [2], larger bubbles around the points signaling a higher
outlier score).

Outliers near the cluster (i.e., true positives to report as outliers)
and border points of the cluster (i.e., points in the tails of the Gaus-
sian, that would be reported as false positives) are difficult to dis-
tinguish. Those are what we called “borderline” points. The scores
of points of these two categories are often rather similar. Some in-
liers are even ranked higher than some outliers. We show some in-
stances of LOF runs on perturbed data in Figure 2(b) to Figure 2(f).
The perturbance leads especially to instability of the ranks in the
borderline cases while clear outliers remain stably ranked at top.



Combining the ranks of several instances obtains an improved re-
sult especially for the borderline cases.

We inspect the top-14 ranked objects for the original data and
the 5 perturbations in Table 1(a) for an illustration of the effects of
perturbation, especially on the critical borderline points. There are
8 genuine outliers in this example, but the original LOF ranking
does not include ID 228 among the top 8 due to a “false positive”
(ID 54). The reason is that the outlier (ID 228) is close to the cluster
and the inlier (ID 54) is relatively far out. Even though ID 228 is
not always among the top-8 in the multiple perturbations either, the
different perturbations commit different errors. Different cluster
objects, not consistently ID 54, are taking a place among the top-
8 instead of ID 228, and different cluster objects are occasionally
ranked higher than ID 54.

We implement the perturbation by adding to each point an attribute-
wise noise component sampled from N (0, σa) in each attribute a.
We scale σa as a selected percentage of the range maxa(p ∈ D)−
mina(p ∈ D) of the corresponding attribute a. Rand proposed
0.01 for clustering evaluation, we experiment also with higher val-
ues. In the example of Figure 2 we use a percentage of 0.02.

4. PERTURBATION-BASED ENSEMBLE
Having derived a set of outlier rankings, building an ensemble

requires a suitable combination of the different rankings. As the
rankings are based on outlier scores, an aggregation (e.g., sum or
average) of all scorings for each data object is straightforward and,
in fact, is the strategy used in previous ensemble approaches [30,
33, 29, 39]. This combination of scorings, however, requires the
different scorings to follow a comparable semantic and behavior.
Here we apply, as one variant of a combination, the average score.
As a prerequisite, we apply a linear scaling of all scores for each
single outlier detector to the [0, 1] interval to allow for meaningful
combinations like the average score of an ensemble of individual
scorings for each object.

Though more complex transformations have been proposed in
the literature [29], the simple linear scaling is sufficient to guaran-
tee a meaningful combination.

However, it is known that outlier scores are often not providing
good contrast [29, 50]. As the perturbation induces additionally un-
foreseeable variants in the value range of the scorings (depending
on the outlier detection method used as base detector), we propose
as another variant of combination to use the rankings directly. For
our rank combination, we count how often (i.e., how consistently)
a data object is ranked within the top-n positions among the rank-
ings of the i base detectors. However, we do not choose a specific
value for n but vary n from 1 to the database size N = |D| and
accumulate by summing up the counts for all n.

We expect several benefits from this rank accumulation proce-
dure. First, the top positions will naturally contribute much more
to the resulting combined ranking but, other than in the procedure
of [30], erroneously top-ranked points in a single base ranking can
be balanced by the remaining rankings. What we count is the con-
sistency in the ranking. Second, as the ranking position for inliers
is expected to vary much more (i.e., the ranking positions of inliers
are much more inconsistent), this procedure should also help to
widen the gap between outliers and inliers in the resulting score
distribution. A significant gap typically does not exist in score
distributions of most outlier detection methods [29]. Third, if no
genuine outlier is present in the data, for many methods it is not
obvious from the scores that the top-ranked data object is actually
not an outlier. Here, however, we will obtain scores considerably
lower than the theoretical maximum (i.e., i ·N ) if the ranking is not
consistent in most of the perturbed data sets.

As an example, consider the perturbation ranks of Table 1(a).
We list in Table 1(b) the ranks accumulated for n = 1, . . . , 14 over
perturbations 1-5 for those objects in Table 1(a) that are involved in
the top-14 of any of the 5 rankings on perturbed data. In each row,
we count how many of the involved ensemble members report the
object within the top-n, increasing n from column to column. For
example, ID 225 has been seen at top-1 once and is on position 2
for the remaining 4 individual rankings, resulting in a count of 5 for
all top-n (n ≥ 2). We stop in the table at rank 14 for practical rea-
sons, the algorithm would proceed until N = |D|. This continued
accumulation will not change the lead in the count accumulated un-
til rank 14 but only disambiguate the ranking for the lower ranked
points (that did not occur in the top-14 and so far have all the same
count, namely 0). The points that occurred in all i (here: 5) rank-
ings up to a certain position n (here: 14) have a fixed rank position
among the top-n. For the two points that have been misranked by
LOF on the original data, we see that the true outlier ID 228 on
these few perturbations already accumulates enough evidence of
being more consistently a top outlier than ID 54.

Normalizing the accumulated count with 1
i·N (e.g., for combi-

nation with other methods) obtains a score in the interval [0, 1].
Values near 1 indicate a high probability of being an outlier as the
corresponding object occurred in almost all rankings near the top
position (the value is exactly 1 for an object that is always on po-
sition 1). In the example of Table 1(b), we could thus normalize
the values in the last column dividing by 5 · 14 = 70, resulting in
scores close to 1 for the top outliers ID 224, 225, and 226.

This specific benefit requires, however, the base outlier detec-
tion method to be unstable w.r.t. data perturbation and we will in
fact show that different outlier detection methods seem differently
suitable for our ensemble method.

5. EVALUATION

5.1 Methods
The canonical competitor is feature bagging [30]. Other ensem-

ble methods [20, 33, 29, 39] are meta-methods and could be used
on top of our perturbation method (or on top of feature bagging,
as in [33, 29, 39]) but do not propose original means to induce
diversity when using a selected base outlier detection method. In-
stead, they open up possibilities of a meaningful combination of
the scores of different outlier detection methods as base methods
for an ensemble or combinations of scores obtained by different
parametrizations of some base method. This is a challenge per se,
as the scores of different methods or different parametrizations of
the same method (e.g., the kNN-distance) can differ widely in their
magnitude. However, there is no fair way of comparing ensembles
based on different methods to ensembles based on perturbation or
on feature bagging.

As base methods we use kNN [36], weighted kNN (kNNw) [5],
LOF [10], LDOF [47], and LoOP [28], all with a range of param-
eter settings for the size k of the neighborhood equal to 5, 10, and
50. We compare the results of the ensembles using the same base
method and the same parametrization.

For the size of the feature bags (number of attributes) we chose⌊
2
3
d
⌋
; for the size of an ensemble we chose 25 ensemble members

(i.e., 25 perturbations or 25 feature bags). For the average vote, we
linearly scale the outlier scores provided by an individual outlier
detector to the interval [0, 1].

We report the area under the receiver operating characteristic
curve (ROC AUC), which plots the true positive rate vs. the false
positive rate, a common measure for evaluation of outlier detec-



Table 2: Comparison of breadth-first traversal vs. our rank accumulation on two batches of 30 datasets each
(a) Batch 1

breadth-first traversal rank accumulation
k µ σ min max µ σ min max
5 0.872 0.022 0.826 0.922 0.951 0.009 0.926 0.972

10 0.884 0.023 0.833 0.928 0.952 0.009 0.931 0.969
20 0.876 0.027 0.82 0.924 0.95 0.009 0.933 0.969
50 0.859 0.032 0.775 0.908 0.944 0.01 0.924 0.961

(b) Batch 2
breadth-first traversal rank accumulation

k µ σ min max µ σ min max
5 0.86 0.032 0.811 0.916 0.944 0.015 0.914 0.972

10 0.875 0.032 0.800 0.934 0.947 0.013 0.917 0.976
20 0.87 0.032 0.805 0.939 0.946 0.014 0.911 0.975
50 0.858 0.038 0.754 0.92 0.941 0.016 0.907 0.970

tion methods [30, 20, 33, 29, 39, 49, 48]. The experiments are
performed using ELKI [3].

5.2 Datasets
For a statistical assessment, we generate two independent sets

of 30 synthetic datasets (batch 1 and batch 2). For each dataset,
we choose randomly values for the following parameters in the
given range: dimensionality d ∈ [20, . . . , 40], number of clus-
ters c ∈ [2, . . . , 10], for each cluster independently the number
of points nci ∈ [600, . . . , 1000]. For each cluster, the points are
generated following a Gaussian model as follows: For each clus-
ter ci, and each attribute a, we choose a mean µci,a from a uni-
form distribution in [−10, 10] and a standard deviation σci,a from
a uniform distribution in [0.1, 1]. Then for the cluster ci, nci clus-
ter objects (points) are generated attribute-wise by the Gaussians
N (µci,a, σci,a). The resulting cluster is rotated by a series of ran-
dom rotations and the covariance matrix Σ corresponding to the
theoretical model is computed by the corresponding matrix oper-
ations [42]. Then, we compute for each point the Mahalanobis
distance to its corresponding cluster center, using the covariance
matrix Σ of the cluster. For a dataset dimensionality d, the Maha-
lanobis distances for each cluster follow a χ2 distribution with d
degrees of freedom. We label as outliers those points that exhibit
a distance to their cluster center larger than the theoretical 0.975
quantile, independently of the actually occurring Mahalanobis dis-
tances of the sampled points. This results in an expected amount of
2.5% outliers per dataset.

As real datasets we chose from the UCI machine learning repos-
itory [18]: pendigits, Wisconsin breast cancer (WBC), Waveform
Database Generator (waveform), and Cardiotocography (cardio).
We prepared these datasets for outlier detection by downsampling
one class (‘4’, ‘malignant’, ‘0’, and ‘5’, respectively) to obtain a
small amount of outliers in the resulting data set (20, 10, 100, and
42 objects, respectively). Criteria for dataset selection were a suit-
ably high dimensionality for the applicability of feature bagging,
and a promissing class structure to allow for the existence of out-
liers when downsampling a class. The resulting datasets consist of
6734, 367, 5000, and 2126 objects, in 16, 30, 21, and 21 numerical
dimensions, respectively. With this method of using classification
data for evaluation of outlier detection methods we are conform
with the literature [30, 1, 46, 47, 25, 49].

5.3 Rank Accumulation
To discern between the feature bagging as a method of inducing

diversity on the one hand and the ranking combination procedure
on the other hand, we first evaluate feature bagging with its orig-
inal setup, the breadth-first traversal for rank aggregation, versus
feature bagging with our proposed rank accumulation method for
rank aggregation. We test this for LOF as base method as proposed
in the original paper [30], for values of k ∈ {5, 10, 20, 50}. Using
the two independent batches of 30 synthetic datasets each, we com-
pare the ROC AUC of the original feature bagging based on LOF
with different values of k, averaged over the 30 datasets of each
batch.

The results are captured in Table 2(a) and Table 2(b) for batch
1 and batch 2, respectively. The figures for both batches of 30
datasets are similar and support our claim that the rank accumu-
lation method we propose is superior to the breadth-first traversal
strategy of the original feature bagging method [30].

5.4 Perturbation
In the following, we study the potential of data perturbation as

a means to induce diversity among individual outlier detectors in-
dependent of the rank combination method. We therefore use the
competitor feature bagging in an improved variant by applying our
rank accumulation method instead of the original breadth-first traver-
sal. Thus the reader should consider that the results we report for
feature bagging in the ranking variant are better results than the
original method would achieve.

5.4.1 Impact of Magnitude of Noise
The impact of the choice of the standard deviation σ for the noise

perturbation is demonstrated in Figure 3 for LoOP as base method
(the other methods having similar results) with different parameter
values for k on the Pendigits data, and in Figure 4 on the WBC
data. The plots show the performance (ROC AUC) of the perturba-
tion ensembles with mean score voting and our rank accumulation
method (“pert-voting” and “pert-ranking”) using different values of
σ against the performance of the base method and the two feature
bagging variants (using mean score voting and our rank accumula-
tion method, noted as “fb-voting” and “fb-ranking”, respectively).
The base method and the feature bagging variants are shown as
constant lines as they are independent of the data perturbation.

We essentially see on the pendigits data (Figures 3(a) to 3(c))
that a value for σ chosen too small has not much impact on the
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Figure 3: ROC AUC of the perturbation ensemble (mean score
voting and rank accumulation) over Pendigits data, based on
LoOP against LoOP as baseline and feature bagging (mean
score voting and rank accumulation) for different magnitudes
of perturbance (x-axis: scaling factor of σ).
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Figure 4: ROC AUC of the perturbation ensemble (mean score
voting and rank accumulation) over WBC data, based on LoOP
against LoOP as baseline and feature bagging (mean score vot-
ing and rank accumulation) for different magnitudes of pertur-
bance (x-axis: scaling factor of σ).



ensemble performance as compared to the base method. If σ is
chosen large enough, the impact is significant, especially in case of
a relatively bad performing base method. For higher parameters k
the results are similar, LoOP is performing already almost perfect
and the room for further improvement of the ensemble becomes
small (see Figure 3(c) for k = 50).

For the WBC data (Figures 4(a) to 4(c)), the results are simi-
lar. These data are easier, however, and the performance of the
base method (we show LoOP again, the results for the other meth-
ods are similar) is almost at a ROC AUC value of 1 for a param-
eter value k = 50 (Figure 4(c)). For such a good performance of
the base method, the ensemble cannot improve the results anymore
and shows a very similar performance to the base method. Again,
however, for a worse choice of k for LoOP (Figures 4(a), 4(b)),
the performance gain of the perturbation ensemble over the base
method can be substantial, also when compared to the feature bag-
ging ensemble which here, actually, does not improve over the base
method.

5.4.2 Performance for Different Parameter Values
For the next plots, we vary parameter values of the base method

for a constant magnitude of perturbation. On the WBC data, we
show LDOF for a small (Figure 5(a)) and a large (Figure 5(b))
value of σ for the perturbation. Clearly, for a bad parametrization
of the base method, a larger perturbance has a higher potential of
improvement, but is also more likely to deteriorate in case of a good
parametrization of the base method where LDOF already reaches
ROC AUC values near 1 (k = 50).

Similar are the results in this respect for LOF (Figures 5(c), 5(d)),
except that LOF performs better than LDOF on these data with the
same parameter values.

For the waveform data (Figures 6(a) to 6(d)), we confirm again
that the perturbation ensemble improves more distinctly for bad
parameter choices (neighborhood too small for these data) but for
better parameter choices for the base method, the perturbation en-
semble performs on a comparable level w.r.t. both the base method
and the feature bagging variants (that do not improve here either).

On the cardio data, we see a strong potential of the perturbation
ensemble to improve especially very bad results (Figures 7(a) to
7(d), examples are kNN, LDOF, LOF, and LoOP, the figures for the
other methods are similar). The original methods for small param-
eter values all have ROC AUC values near 0.5, i.e., almost random
performance. The perturbation ensemble can recover from that to
ROC AUC values around 0.8 or even 0.9. Given the variance of
the performance in the single perturbed data instances, these per-
formance boosts exhibit z-scores in the range of 5 to 7 in these
cases.

6. CONCLUSION
We proposed data perturbation as a means to induce diversity

among individual outlier detectors and to build an ensemble with
suitable combinations of the resulting outlier scores or ranks. We
introduced a rank accumulation method that is far more suitable for
outlier rank combination than the breadth-first traversal rank com-
bination used in the feature bagging [30] method. Although there
is no clear superiority of the rank accumulation over the average
score combination, or vice versa, this result shows the potential of
refined rank combination strategies for outlier detection ensembles.

The fundamental and flexible technique of data perturbance can
be combined with a variety of conventional outlier detection tech-
niques. For any of these methods, the parametrization is diffi-
cult and different parameters can lead to results of highly varying
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Figure 5: ROC AUC over WBC data, different base methods
with different parametrizations of the base methods (x-axis: k)
and performance of ensemble methods based on the respective
base method: feature bags vs. perturbed data.
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Figure 6: ROC AUC over Waveform data, different base meth-
ods with different parametrizations of the base methods (x-
axis: k) and performance of ensemble methods based on the
respective base method: feature bags vs. perturbed data.
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Figure 7: ROC AUC over Cardio data, different base methods
with different parametrizations of the base methods (x-axis: k)
and performance of ensemble methods based on the respective
base method: feature bags vs. perturbed data.



quality (we demonstrated results varying between random perfor-
mance and almost perfect performance). Outlier detection ensem-
bles based on perturbance exhibit a remarkable potential for re-
covering from almost random performance of a base method (e.g.,
slightly above 0.5 ROC AUC for a poor choice of parameters) to
values around 0.9 ROC AUC of the perturbation ensemble (feature
bagging does not show this behavior).

We note that this positive potential comes along with the risk of
slightly deteriorating an ensemble performance if the base method
is already working extremely well. Our experiments show, how-
ever, that in most cases the perturbation ensemble on top of already
strong base learners performs comparably.

As pointed out recently [48], research on ensemble methods for
outlier detection is in an early stage but already showed promis-
ing results. Two fundamental issues for ensembles for outlier de-
tection are methods or principles used to create diversity among
outlier models and meaningful ways to combine outlier rankings
produced by such diverse outlier models. Here, we contributed a
new approach to both of these fundamental questions.
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