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Abstract
We analyse the interplay of density estimation and outlier
detection in density-based outlier detection. By clear and
principled decoupling of both steps, we formulate a general-
ization of density-based outlier detection methods based on
kernel density estimation. Embedded in a broader frame-
work for outlier detection, the resulting method can be eas-
ily adapted to detect novel types of outliers: while common
outlier detection methods are designed for detecting objects
in sparse areas of the data set, our method can be modified
to also detect unusual local concentrations or trends in the
data set if desired. It allows for the integration of domain
knowledge and specific requirements. We demonstrate the
flexible applicability and scalability of the method on large
real world data sets.

1 Introduction
Barnett and Lewis defined an outlier in their classic text-
book [6] as: “An observation (or subset of observations)
which appears to be inconsistent with the remainder of that
set of data.” The definitions and measures of “inconsis-
tency”, however, vary widely. Traditionally, outliers were
detected based on assumptions concerning statistical distri-
butions. In the context of normal distributions, the “3 · σ
rule” is the classic example of an outlier test [15]. Alas, in
the domain of data mining, data are usually too complex and
too large to allow for proper statistical modeling, let alone
the evaluation of such models. Large databases require fast
and efficient, yet flexible tests for outliers without the need to
fully model the data first. DB-Outlier [15] is a good example
of such a pragmatic approach to detecting outliers: instead
of trying to model the data, a simple radius query is sent to
the database for each object, and if there are too few neigh-
bor objects, the object is considered to be an outlier. At first,
this approach may appear to be overly simplistic but, when
put into the context of database analysis, it has the advan-
tage of being highly efficient as the database index structures
can accelerate the required neighborhood queries. Many new
methods have been proposed since, often only with slight
differences, and many are discussed in a recent textbook [3]
and in related surveys [9, 25]. A recently very active domain
is subspace outlier detection, tackling the challenges of out-

lier detection in complex and high-dimensional data [34, 10].
Here, we address local density-based outlier detection in
low-dimensional data. Meta-methods such as HiCS [14]
could allow to use our method in high-dimensional spaces.
It can be seen as a statistically refined and cleaned up variant
of density-based outlier detection [8, 21, 18, 13], that tries
to go back to the statistical roots of the methods, while still
keeping true to the domain of database-backed data analysis
and advancing the state of the art both by having a clean con-
nection to the statistical background, but also by making the
method more flexible than the earlier algorithms.

In the remainder, we survey outlier detection methods
and kernel density estimation in Section 2. In Section 3,
we examine some of them, how they connect to density
estimation, and in which way they use an overly naïve
notion of density. Based on this analysis, we elaborate
on the construction of a kernel density estimation (KDE)-
based outlier detection method that can be fine-tuned to the
domain specific requirements. In Section 4, we demonstrate
the flexibility, usefulness, and scalability on large real-world
data sets and novel problems. Section 5 concludes the paper.

2 Related Work
The distance-based notion of outliers [15] considers an ob-
ject x being an outlier if more than a given fraction of all ob-
jects in the database have a distance larger than some thresh-
old from the object x. Variants of the distance-based notion
of outliers are models based on the distances to the k nearest
neighbors [22, 4]. Both the idea of counting neighbors within
a threshold radius as well as using the k nearest neighbors are
simple density estimates. Refined “local” density-based ap-
proaches consider ratios between the local density around an
object and the local density around its neighboring objects.
The local outlier factor (LOF) [8] compares the density esti-
mate for each object o of a database D with the average den-
sity estimates for the k nearest neighbors of o. A LOF value
of approximately 1 indicates that the corresponding object is
located within a region of homogeneous density (i.e. a clus-
ter). If the density in the local neighborhood of o is lower
than the density around the k nearest neighbors of o, o gets
assigned a higher LOF value. The higher the LOF value of
an object o is, the more distinctly is o considered an outlier.
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Several extensions and refinements of the basic LOF
model have been proposed, e.g. a connectivity-based outlier
factor (COF) [29], or using the reverse nearest neighbors ad-
ditionally to the nearest neighbors and considering a sym-
metric relationship between both values as a measure of out-
lierness [13]. Another variant is named Local Outlier Inte-
gral (LOCI) [21], based on the concept of a multi-granularity
deviation factor. An adaptation of the distance-based no-
tion of outliers to the idea of local outliers results in a lo-
cal distance-based outlier detection (LDOF) approach [31].
An attempt to stabilize the results of LOF and make it more
robust with respect to the choice of the minPts parameter is
LoOP [16]. It is based on a standard deviation-based distance
estimation and uses the Gaussian error function to normalize
the outlier scores to [0; 1] to improve usability. LDF [18] is a
naïve merge of LOF concepts and kernel density estimation.

Kernel density estimation (KDE) is a field that has re-
ceived much attention in statistics since the 1950s. Sum-
maries of the state of the art can be found in various text-
books and publications [30, 26]. Yet, these techniques are
underused in many data mining disciplines, often for the rea-
son that these methods do not pay much attention to com-
putational complexity in databases. KDE is commonly ac-
cepted as quadratic complexity, and then is often approxi-
mated by using grid based binning, which can be computed
inO(G logG) using fast Fourier transform (FFT) based con-
volution [28]. For local outlier detection, a grid based den-
sity estimation does not work very well, as it loses local dif-
ferences in density below the grid resolution. However, ker-
nel density estimation in general obviously is a prime candi-
date to improve the quality of density-based outlier detection
methods, which will be the focus of this article.

To summarize, many approaches to outlier detection
provide variants of outlier scores that are essentially based
on different methods for density estimation. Since these
scores are based on quite different assumptions, intuitions,
and models they are differently well suited for different data
sets and application areas.

3 KDE for Outlier Detection
The method we propose is not the first to use kernel density
estimation (KDE). However, it is the first that pays attention
to the statistics of density estimation, and then in a second
phase uses these density estimates and outlier detection. For
example, Local Density Factor (LDF) [18] is a LOF vari-
ant that explicitly uses kernel density estimation. However,
instead of keeping the statistic knowledge of density estima-
tion, they modify their estimates (in a statistically not well
founded way) to resemble the naïve density estimation of
LOF. As a consequence, instead of combining the strength
of both and separating the different components, they carry
over a conceptual weakness of LOF into their modified KDE.
We will detail fundamental concepts of LOF and the concep-

tional deficits of LDF here before we discuss our approach
which, as we will demonstrate, is a more general concep-
tional and practical improvement over LDF.

3.1 State-of-the-Art First, we will analyze existing meth-
ods with respect to the kernel they use for density estimation,
to show why it may be desirable to use a proper kernel den-
sity instead. We will start with one of the best known outlier
detection methods in data mining: the Local Outlier Fac-
tor (LOF) [8], and its simpler variant Simplified-LOF [25].
Both can be seen as two phase approaches, where the first
phase is the density estimation, the second phase compares
the density-estimate of each object to the density-estimates
of its neighbors.

LOF uses the asymmetric reachability distance:

reach-distk(o← p) = max{k-dist(p), d(o, p)}(3.1)

where k-dist(p) is the distance from p to its kth nearest
neighbor, which is the core distance in OPTICS [5] cluster-
ing. From these distances, the local reachability density is
then estimated using the formula:

lrd(o) := 1

/∑
p∈kNN(o) reach-distk(o←p)

|kNN(o)|
(3.2)

where kNN(o) are the k nearest neighbors of o. Simplified-
LOF substitutes the regular distance d(o, p) for the reacha-
bility distance. Mathematically, Equation 3.2 however is the
harmonic mean of the neighbor density estimates:

lrd(o) ≡ harmonic-mean
p∈kNN(o)

1

reach-distk(p←o)
.(3.3)

This formula is closely related to the standard kernel density
estimation formula, but using a different mean:

KDE(o) :=
1

n

∑
p∈DB

Kh(d(o, p)) ≡ mean
p∈DB

Kh(d(o, p))

where Kh(u) is the kernel function with bandwidth h. With
Klrd(u) = 1/|u| the KDE becomes Simplified-LOF with a
different mean and with the full database DB instead of using
only the neighborhood kNN. If we assume that the density
contribution for objects outside the neighborhood kNN(o) is
negligible, then this reduces to a linear scaling factor k/n.
For LOF itself, the similarity can be formalized as:

lrd(o) = harmonic-meankNN(o)Klrd(reach-distk(p← o))

≈ harmonic-meano∈DB
n

k
Klrd(reach-distk(p← o)).

We can now identify and review four differences between the
density estimate of LOF and KDE:

(1) the use of the harmonic instead of the arithmetic mean;



(2) density estimation is based on the kNN instead of the
complete database;

(3) instead of a statistical kernel function, LOF uses 1/|u|;

(4) LOF (but not Simplified-LOF) uses reachability dis-
tance instead of distance.

(1) The choice of the harmonic mean (which is most
appropriate for values in a frequency domain) is due to
the original formulation of LOF, but was not a conscious
choice.The inverse quadratic mean used by LoOP [16] is
an heuristic hot-fix trying to improve robustness, but is
not based on a strong theory. The model of KDE on the
other hand is based on additive functions and preserves the
unit integral (total density) as desired in density estimation.
Therefore, the arithmetic mean is the preferred choice.

(2) Using the kNN only instead of the full database is
reasonable in the light of using an indexed database, which
reduces overall complexity from O(n2) to O(n log n). In
fact, nearest-neighbor methods are common in Kernel Den-
sity Estimation, albeit used slightly differently; compare a
review of nearest-neighbor based density estimation [30] and
a recent development using the k nearest neighbors [20].
However, kernel density estimators based on theory will al-
ways divide the density by the sample size n, not the neigh-
borhood size k.

The points (3) and (4) are two sides of the same coin:
how to estimate the density contribution of one neighbor to
the sample point. The approach used by LOF is based on
the idea of smoothing the results by using the core-distance
introduced in OPTICS [5] clustering. The resulting function
is, however, not a proper kernel function in the widely
accepted definition of a kernel density function, which has
the key properties of having a unit integral

∫
K(x)dx = 1.

Not only has the kernel used by LOF an infinite integral,
but even when truncated at a finite maximum radius, it does
not have a constant integral value. Instead, it gives more
weight to objects in dense regions (with a small k-dist),
and less weight to objects in sparse regions. The simplified
kernel 1/|d(o,p)| used by Simplified-LOF (and similarly, the
kernel used by LoOP) is even worse here: for d(o, p) =
0, the density contribution becomes infinite. The only
reason this problem does not surface immediately is due to
the computation being done with the inverse values, and
the harmonic mean is able to handle infinite values (e.g.
H(.5,∞) = 1). The additional clipping by k-dist used by
LOF then further stabilizes the results.

Local Density Factor (LDF) [18] is motivated from stan-
dard kernel density estimation, using the Gaussian kernel.
The widely accepted rotational symmetric version of the
Gaussian kernel density estimation in d dimensions is

KDEGauss(o) :=
1

n

∑
p

1

(2π)d/2hd
e−

1
2

d(o,p)2

h2 .(3.4)

2
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(a) Unclipped kernel-like functions: Simplified-LOF and Gaussian

1/k-dist(xi)

1
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(b) Clipped kernel-like functions for k-dist = 1: LOF and LDF

3K(1)
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(c) After rescaling to the same height at ±1

Simplified-LOF LOF LDF Gaussian kernel

Figure 1: Simplified-LOF, LOF, and LDF kernel-like func-
tions in comparison to the regular Gaussian kernel

However, the authors of LDF chose not to stick to this
popular kernel. Instead, they modified it akin to the LOF
reachability density, by substituting the local reachability
distance for the plain distance in their density estimate:

LDEd(o) :=
1

|kNN(o)|

∑
p∈kNN(o)

1

(2π)d/2hd
e−

1
2

reach-dist(o,p)2

h2 .

However, by this modification, LDE loses the desired prop-
erties of a proper kernel density estimation: instead of hav-
ing an integral area of 1 for every point, a varying amount
of weight is clipped from the kernel in a heuristic fashion.
While the resulting kernel has a finite integral, the exact in-
tegral value varies based on the k-distances of the neighbors.

In Figure 1, we visualize these kernel-like functions to
explain our concerns. In Figure 1a, we plot the unclipped
functions, i.e. Simplified-LOF and the Gaussian kernel. Fig-
ure 1b visualizes the kernel-like functions after clipping
them at a maximum height of K(1). For the LOF func-
tion, the clipping is expected to be beneficial, as it avoids
the extreme values that would occur close to 0. For LDF
however–which uses a modified Gaussian kernel–this argu-
ment does not hold. Not only is the Gaussian kernel finite,
it also already has a flat top that does not discriminate small
distances much anyway. Figure 1c tries to compare the four



kernels with each other by adding a constant scaling factor
that does not change relative densities. It can be seen that
in the range of 0.75 . . . 1.5 the kernels are all very similar,
whereas close to 0, the Simplified-LOF kernel is substan-
tially different, not necessarily for the better.

In conclusion, while it is rather obvious that LOF and
its variants perform some kind of density estimation, the
exact properties of this density estimation have not yet
been properly investigated or discussed. In this article,
we explicitly studied the relationship of LOF to kernel
density estimation, and found that LOF and its variants use
a heuristic approach not well supported by theory. Even the
LDF variant, which tries to combine LOF with kernel density
estimation, does so inconsistently and ignores the theoretical
foundations of KDE without giving a reason.

3.2 Reconsidering KDE for Outlier Detection The solu-
tion to this challenge has the beauty of surprising simplicity.
Our proposed method does not divert substantially from the
existing methods. We also perform density estimation, then
compare the densities within local neighborhoods. As such,
it is also an instantiation of the general pattern of local out-
lier detection [25]. However, we propose to use classic ker-
nel density estimation directly instead of experimenting with
non-standard kernels without giving a good reason for this.

3.2.1 Density Estimation Step The kernel function to use
with our method is best to be considered an input parameter
to the algorithm. We suggest to use either the Gaussian or
Epanechnikov kernels of bandwidth h and dimensionality d:

Kgauss,h(u) :=
1

(2π)d/2hd
e−

1
2

u2

h2 ,(3.5)

Kepanechnikov,h(u) :=
3

4hd

(
1− u2

h2

)
.(3.6)

The radially symmetric versions have the benefit that we
only have one bandwidth to estimate, instead of having to
estimate full bandwidth matrices for each object, which con-
tinues to be a difficult problem [26]. The balloon estimator
and sample smoothing estimator [30] are:

KDEballoon,h(o) :=
1

n

∑
p

Kh(o) (o− p) ,(3.7)

KDEsample,h(o) :=
1

n

∑
p

Kh(p) (o− p) .(3.8)

In order to estimate the local kernel bandwidth h(o) respec-
tively h(p), a classic approach is to use the nearest-neighbor
distances [19], i.e. h(o) = k-dist(o). Again, note the simi-
larity between LOF and the sample smoothing estimator. For
our method, we will use the balloon estimators, because re-
search in kernel density estimation shows both theoretical

and experimental benefits in multivariate KDE [30]. Nev-
ertheless, there are concerns about the bias of this method
on the long tail [26]. Sheather and Jones [27] discuss a
data-driven method to estimate kernel bandwidths known as
the “plug-in bandwidth estimator”. For robustness, we use
h(o) = min{meanp∈kNNd(p, o), ε} to avoid division by 0
and to be more resistant to outliers in the kNN. But in gen-
eral, any advanced kernel density estimation method can be
used for this step.

Essentially, for density estimation, we recommend to
stick to the established and proved methods of density es-
timation, but additionally to consider runtime. For example,
if you have database indexes available to accelerate range
queries or k nearest neighbor queries, an approximate den-
sity estimation exploiting these indexes is desirable. If the
kernel function K(o − p) bears next to no weight beyond
the k-nearest neighbor, we do not need to use these for den-
sity estimation. We can also drop constant scaling factors,
yielding:

n · KDEkNN(o) :=
∑

p∈kNN(o)

Kh(o) (o− p) .(3.9)

Since the parameter k can be hard to choose, we propose
to extend the method to cover a range of k = kmin . . . kmax to
produce a series of density estimates (one for each k). This
approach is similar to LOCI [21], yet it is computationally
more efficient and elegant, as the values of k are well-defined
steps, while the LOCI model needs to test arbitrary ε-radii.
By this extension, the method becomes an ensemble method
[2, 33, 32], typically yielding more stable and reliable re-
sults.

3.2.2 Density Comparison Step The density comparison
function used in LOF and its variants can be written as:

LOF(o) := mean
p∈kNN(o)

lrd(p)

lrd(o)
≡

meanp∈kNN(o)lrd(p)

lrd(o)
.

For an object that has an average density, this factor will be
close to 1, while for objects with neighborhoods of much
higher density than that of the object, this value will be
larger. However, there is little control over how large the
values become, or when a value is significantly large.

For our approach, we use a slightly different comparison
method. We assume that not only the local densities vary, but
also the variability itself is sensitive to locality. Therefore,
to standardize the deviation from normal density, we apply
the well-known z-score transformation: Let µX be the mean
of the set X and σX the standard deviation. The z-score
of x then is z(x,X) := (x − µX)/σX (if σX = 0, then
use z(x,X) := 0). Alternatively, one could use more
robust statistics such as the median absolute deviation from
median (MAD) [12]. However, for small sample sizes,
the mean often works better than the median. Only for



Algorithm 1: Basic KDE Outlier Algorithm
s := array for output scores
S := two dimensional array, o× kmax
// Perform kernel density estimation (KDE):
foreach o in DB do

Nmax = compute kmax-nearest neighbors of o
foreach k in kmin . . . kmax do

h = compute kernel bandwidth from Nmax[1; k]

foreach n in Nmax[1; k] do
u = distance (o, n)
S[o][k] = S[o][k] +K(u, h)

end
end

end
// Compare densities:
foreach o in DB do

Nmax = compute/get kmax-nearest neighbors of o
foreach k in kmin . . . kmax do

µ := mean of S[Nmax][k]

σ := standard deviation of S[Nmax][k]

s[o] = s[o] + (µ− S[o][k])/σ

end
s[o] = s[o]/(kmax − kmin + 1)

end
// Normalize scores:
foreach o in DB do

s[o] = 1− cdf(s[o])
s[o] = ϕ · (1− s[o])/(ϕ+ s[o])

end
return s

large values, the median and MAD become more robust to
outliers. Intuitively, a z-score of +3 indicates a deviation of
three standard deviations. When using multiple values of k,
we use the average z-score:

s(o) := mean
kmin...kmax

z
(

KDE(o), {KDE(p)}p∈kNN(o)

)
(3.10)

3.2.3 Score Normalization Step If we now assume the
resulting scores to be approximately normally distributed,
we can use the normal cumulative density function Φ to
normalize the scores to the range [0; 1], and then apply the
rescaling introduced in [17],

norm(p, ϕ) :=
ϕ · (1− p)
ϕ+ p

,(3.11)

to obtain our proposed outlier score

KDEOS(o, ϕ) := norm(1− Φ(s(o)), ϕ).(3.12)

where ϕ is the expected rate of outliers. This parameter can
be intuitively interpreted as a significance threshold.

3.2.4 Algorithm and Complexity Algorithm 1 gives the
basic computation of the KDEOS scores for a range of
k = kmin . . . kmax. But note that we advocate to adapt this

code to the particular problem at hand by integrating domain
knowledge and specific requirements (we will demonstrate
this in the experimental section). The overall code complex-
ity is not high, if the evaluation framework can efficiently
provide the neighbor sets. Also notice that the majority of
this code is what is called “embarrassingly parallel”: if the
neighbor sets are precomputed, the main loops can be exe-
cuted by many mappers in parallel. The aggregation of the
S[o] and s[o] values then is the canonical reduce step. The
interim data produced is of size O(nk2), thus only linear in
the input data size. Therefore, except for the neighborhood
computation step, this algorithm is easy to implement in a
distributed computation framework such as MapReduce.

The complexity of this method is comparable to LOF
and many other outlier detection algorithms. In practise, the
runtime is dominated by the cost of computing the kNN,
which without index support requires O(n2) distance com-
putations. Index structures such as the R*-tree [7] for nearest
neighbor search can reduce this runtime to O(n log n).

Excluding the cost of computing the kNN, the main
analysis loop then requires O(n · k ·∆k) operations (∆k =
kmax − kmin + 1), usually with k � n. While there is obvi-
ously a computational overhead for the more complex kernel
functions, it is small compared to the data management and
distance computation costs.

4 Experiments
To study the merits of using flexible KDE for outlier detec-
tion, we report results in comparison to standard methods on
a well-known data set and two case studies demonstrating the
customization for data sets with special requirements. The
claims we support with this evaluation are (4.1) the suitabil-
ity and competitiveness of our method on a well understood
outlier task in comparison to several established methods,
and (4.2&4.3) the flexibility of our model with adaptations
to two different real data scenarios, where the competitors
are not applicable in a meaningful way.

4.1 Low-Density Outlier Detection The Amsterdam Li-
brary of Object Images (ALOI) [11] is a collection of 110250
images of 1000 small objects, i.e. about 110 images of each
object, from different angles and with different light condi-
tions. By downsampling some of these classes to become
rare objects, we obtained a data set retaining 75000 im-
ages, 717 of which are rare objects (known outliers, up to
4 from the same class).1 For our experiments, we used the
27-dimensional RGB histogram representation. Overall, this
data set and task is a classic setting for density-based outlier
detection: the rare objects are expected to be in less dense
areas than the members of the clustered images. This data

1This data set is available for download at
http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  20  40  60  80  100

R
O

C
 A

U
C

k

LOF
LoOP

Simplified LOF

LDF
kNN Outlier
kNN Weight

Single-KDEOS
KDEOS

Figure 2: Performance over different values of k.

Table 1: Best performance of different algorithms.

Method LOF LoOP S-LOF LDFkNNkNN-W Single-KDEOS KDEOS
Best AUC .795 .815 .816 .772 .735 .735 .834 .855

Best k 5 6 10 8 2 2 kmin = kmax = 48kmax = 100

set is non-trivial: besides the labeled rare objects there are
also outliers within the other classes coming from rare light
situations, and on the other hand, some objects are very simi-
lar, and as such some downsampled objects may indeed have
another full class that looks alike.

Figure 2 visualizes the performance of various algo-
rithms on this data set in terms of ROC AUC which is typi-
cally used for evaluation of outlier detection [23]. As com-
petitors, we use LOF [8], LoOP [16], Simplified-LOF [25],
LDF [18], kNN outlier [22], and kNN weight [4] (implemen-
tations in ELKI [1]). For Single-KDEOS we set kmin = kmax,
while for KDEOS we used kmin = 1. We report the numbers
for the Gaussian kernel, but results using Epanechnikov ker-
nel were almost identical. The best results and the k for the
best result are given in Table 1. kNN outlier works best with
very small values of k. In ELKI k = 2 is the 1NN distance,
as the query point is part of the database. For LOF and most
of its variants, there is a sweet spot in the small ks. Inter-
estingly, the Simplified-LOF variants work much better than
LOF on this data set, probably due to the structure of micro-
clusters in this particular data set. Our proposed method pro-
duces much more stable results, in particular when choos-
ing a large enough range of ks. Besides offering the best
performance of the evaluated algorithms, the parameter k is
also much easier to choose – it just needs to be large enough
for the kernel density estimation to yield meaningful results.
This also is the main limitation: for low values of k, the den-
sity estimates are not yet meaningful, and KDEOS thus does
not (yet) yield good results, whereas a method such as kNN
outlier detection, using a very simple density estimate, can
often yield okay results with the 1-nearest neighbor distance.

4.2 Case Study: Road Accidents Blackspots To demon-
strate the flexibility of our approach, we use a fairly large
data set, the road accidents data set from the UK govern-
ment, spanning the years 2005 to 2011 containing data on
1.2 million road accidents in the UK.2 On these data, the re-
sults of traditional outlier detection methods such as LOF are
of little interest to the user: these outliers consist mostly of
accidents on low use side roads that only see a single acci-
dent every dozen years. Instead, areas of interest are regions
with a high concentration of car accidents, and again within
these hotspots—many crossroads and roundabouts will show
up as hotspots mainly due to the high volume of traffic—only
those are interesting that particularly stick out with respect to
the usual hotspots in their larger neighborhood.

Our method KDEOS can be easily adapted to the par-
ticular needs of this data set. First of all, we modify the
density estimation to use a fixed size kernel instead of a dy-
namic bandwidth. Since cars and roads have the same size
across the country, we do not need to adapt the kernel size
to local data trends. Instead, we chose a radius of 50 me-
ters along with the Epanechnikov kernel (which drops to 0
beyond the maximal bandwidth). As distance function we
choose the great-circle distance and an adapted R∗-tree in-
dex to accelerate search [24]. In the comparison step, we
use a much larger radius of 2 kilometers. Instead of looking
for objects of unusually low density, we look for observa-
tions of an unusually high accident rate. Observations with
a variance of 0—which only happens in remote areas—are
not reported as outliers. In order to find the top outliers, we
do not need to apply normalization beyond the z-score. In
a post-processing step, we extract only the object with the
largest density within a radius of 50 meters as representative
of the hotspot. Obviously, other accidents at the same loca-
tion will achieve nearly the same score, and reporting all of
these to the user does not yield any benefit.

Figure 3 shows an unusual hotspot in Coventry, UK, vi-
sualized in Google Maps and Google Earth. In Figure 3a,
the traffic accident rate (i.e., our density estimation) is indi-
cated using a heat map. We can see multiple other hotspots in
the area, but the detected outlier clearly is an unusually high
concentration (bright yellow indicates twice the concentra-
tion of bright red). Removing the overlay and zooming in,
in Figure 3b, we can see the potential cause for this hotspot:
a three way merge with two lanes coming from the round-
about, two lanes coming from the ringway, and a fifth lane
coming from the short term parking and car park at Coventry
Station. This hotspot is found to have a 4 standard deviations
higher accident rate than other accident sites.

A very different hotspot can be seen in Figure 4, near
Sunderland in northern UK. Tunstall Hope Road is a known
“accident blackspot”, “deathtrap”, and “one of the most

2Publicly available on http://data.gov.uk/



(a) Accident density overlay in Google Maps

(b) 23 accidents at the three-way merge with the entrance to
and exit from station square and the car parks there via Manor
Road.

Figure 3: Traffic accident hotspot in Coventry, UK.
Background imagery c© 2013 Google, Infoterra Ltd & Bluesky

dangerous in Sunderland”. Markings on the street now warn
drivers to drive slowly. Figure 4a indicates that there is a
particularly dangerous spot on this road, with 11 accidents at
this particular corner. With the overlay removed in Figure 4b,
the place seems to be very usual, but it is easy to imagine that
this blind corner, combined with the lack of street lighting
and probably slippery foliage can indeed be dangerous.

Yet, only two single spots of the top 50 outliers detected
are in Greater London. One of them is seen in Figure 5, a
huge roundabout with two multi-lane cut-throughs just north
of the M4 motorway and Heathrow airport. This place was
a top 10 serious accident site in Greater London, and has
since been remodeled, removing one of the cut-throughs in
an attempt to reduce car accidents. The reason why so few
outliers were detected in London probably lies in the fact that
in London there are so many high-accident junctions that
none of them sticks out as substantially more serious than
the others. Of course, none of the analyzed outliers is a new

(a) Accident density overlay in Google Maps

(b) Dangerous blind corner with 11 accidents. “Slow” mark-
ings were added to the street to warn drivers of the dangers
ahead

Figure 4: Traffic accident hotspot in Sunderland, UK.
Background imagery c© 2013 Google, Infoterra Ltd & Bluesky

result. Traffic accident blackspots are usually well known to
local police, and can be better analyzed. However, that this
fairly general method can be easily adapted to this particular
problem shows the flexibility of the approach. At the same
time, it shows the following need: instead of looking for
an off-the-shelf and parameterless algorithm, a good data
mining approach is modular and can this way easily be
adapted to the domain knowledge for the desired use case.

4.3 Case Study: Radiation Measurements For the sec-
ond case study, we use a data set of 6.8 million radiation
measurements taken (mostly) in Japan after the Fukushima
nuclear disaster.3 This is a spatio-temporal data set with
very different data density due to different sampling rates,
automated measurements and a high amount of noise due
to different sensors, mobile sensors, and low sensor quality.
Again, classic outlier detection methods will be of little use,

3Publicly available on http://safecast.org/



Figure 5: Traffic accident hotspot north of Heathrow.
The east-west cut-through has since been blocked.
Background imagery c© 2013 Google, Infoterra Ltd & Bluesky

as they do not take spatial and temporal relationship into ac-
count. Outliers detected by running LOF on such a data set
will not bear useful semantics, as LOF does not treat time,
location, and radiation level attributes differently. Therefore,
we again need to customize our method for this problem to
get meaningful results.

The main customization point here is the definition of
neighbors since here the temporal aspect is just as important
as the spatial aspect. We define a specialized distance
function as follows:

d(x← y) :=

{
spatial(x,y)
100 meter + temporal(x,y)

1 day if x before y
∞ otherwise

This distance function combines both spatial and temporal
differences, but it also excludes measurements that come
later in time. The reason is that we only want to use a
measurement x to estimate the value of a measurement y if
it is in the future, in order to detect unexpected changes.

Using this combined (and asymmetric) distance func-
tion, we compute the kNN of each object. But instead
of estimating the density of observations, we want to esti-
mate the radiation level. For this we use the kernel den-
sity as weight for averaging the neighboring radiation lev-
els. (An improved method could also take radioactive de-
cay into account.) Mathematically, the method changes only
marginally: each object now has a different weight instead of
a unit value. This yields two different values for each point:
an estimated (or “predicted”) radiation level and an actual
measurement. However, the raw difference of these two is
not very useful yet: in areas where a lot of measurements
were taken, we will be having much better predictions, and
in areas with higher radiation levels, the natural differences
will be much higher. So in order to be able to detect out-
liers in this data set, we need to put these measurements into
a local context. For this we can again use the concepts of

Figure 6: Outliers in radiation measurements,
Fukushima prefecture, Japan, in Google Maps.
Background imagery c© 2013 Google, ZENRIN

local outlier detection as introduced by LOF and discussed
throughout this paper. However, the SafeCast data are very
noisy: there are measurement errors, varying general radi-
ation levels, and an highly imbalanced number of measure-
ments4. Therefore, we need to choose a rather large value of
k as reference set, and instead of using mean and variance,
we will this time use the median absolute deviation (MAD)
between the predicted and the actual values to standardize
the deviation. We can then again pinpoint the most “unusu-
ally extreme” deviations to the user.

Many of the detected outliers are probably due to mea-
surement errors and badly calibrated sensors. The data pro-
vided by SafeCast is in cpm, a unit that is considered to be
highly sensor model dependent. Nevertheless, the inspected
values all indicate that the outlier detection worked as de-
sired: KDEOS was able to detect outliers of very different
magnitudes in different areas of the map.

Some of the most extreme outliers were found along Na-
tional Route 6, the closest highway to the Fukushima nuclear
plants and closed since (in the bottom right of Figure 6).
Here, readings of 8000 cpm have been reported in September
2011 and October 2011, while values of 3000 cpm (respec-
tively 700) were predicted. On the online map by SafeCast,
peak values of 10000 cpm and averages of 6000 are listed,
but these averages do not take temporal aspects into account.
On the other hand, there are also a number of outliers re-
ported for Koriyama, consisting of measurements around
200, where 90 are considered normal. A large amount of
outliers was detected in the area between Mount Hiyama and
Mount Ryozen, an area that was in wind direction when ra-
dioactive material was released at Fukushima. Other outliers
seem to correlate with highway restaurants, plausibly caused
by drivers stopping there and bringing in fresh air and dirt.

4Some users contributed up to 50.000 automatic measurements mostly
from their back yard, which are extremely redundant.



5 Conclusion
In previous approaches to density-based outlier detection,
density estimation and its application to outlier detection
were intermixed and combined in a heuristic way only. Here,
by theoretical analysis, we provide a clear and principled
separation of both components. This results in a combina-
tion of existing experience in kernel density estimation with
the ideas of local and density-based outlier detection meth-
ods, preserving the strengths of both. As a consequence, the
new approach, KDEOS, can be seen as a blueprint that can
easily be adjusted in various places, to incorporate domain
specific knowledge and application-specific requirements, as
well as in order to specify the desired type of outliers to be
detected. By decoupling the different steps of outlier detec-
tion, the new method allows a best-of selection from differ-
ent domains: established density estimates by KDE in the
first step, robust statistics in the second step, and finally a
user-oriented score rescaling yield a powerful default com-
bination for outlier detection. Any of these steps can be mod-
ified to suit the particular needs of the data set, of the appli-
cation scenario, and of the user.
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