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Abstract—We consider the problem of outlier detection and
interpretation. While most existing studies focus on the first
problem, we simultaneously address the equally important
challenge of outlier interpretation. We propose an algorithm
that uncovers outliers in subspaces of reduced dimensionality
in which they are well discriminated from regular objects
while at the same time retaining the natural local structure of
the original data to ensure the quality of outlier explanation.
Our algorithm takes a mathematically appealing approach
from the spectral graph embedding theory and we show that
it achieves the globally optimal solution for the objective of
subspace learning. By using a number of real-world datasets,
we demonstrate its appealing performance not only w.r.t.
the outlier detection rate but also w.r.t. the discriminative
human-interpretable features. This is the first approach to
exploit discriminative features for both outlier detection and
interpretation, leading to better understanding of how and why
the hidden outliers are exceptional.

I. INTRODUCTION

Outlier identification is a key problem for many prac-
tical applications. Unlike other data mining tasks such as
clustering, classification, or frequent pattern analysis which
aim to find popular patterns, outlier detection is to capture
a small set of objects that deviate significantly from the
larger number of common objects in a data set. Mining and
interpreting that kind of inconsistent patterns poses particular
challenges and issues. The difficulty often lies in the fact that
the population of outliers is small, compared to the number
of regular objects, limiting the learning capability of most
algorithms. It is also very hard to precisely define, quantify
and interpret the notion of “significant deviation” of a data
object, especially in high dimensional spaces.

The problem of outlier detection in various application
domains attracted significant research effort [11]. Unfortu-
nately, most existing studies focus on the problem of outlier
detection only but often ignore the equally important prob-
lem of outlier explanation. In many application scenarios,
the user is not only interested in detecting outliers but would
like to gain deeper insights of why these are exceptional w.r.t.
the other, regular, objects (or inliers). Generally, an anomaly
degree of an object can be considered as a first step toward
outlier explanation since this piece of information shows
how likely the object was generated by the same mechanism

as the majority of the data. Yet, from the viewpoint of
a practical user, such a numerical score provides limited
information, especially for high dimensional data, as it is
lacking the information in which data view the object is
most exceptional. In terms of interpretation, we thus claim
that an identified outlier should be explained clearly in a
compact view, as a succinct subset of original features, that
shows its exceptionality. This type of knowledge, obviously,
not only helps the domain experts, who often have little or no
expertise in data mining, to validate the practical existence
of the discovered outliers but also further improves their un-
derstanding of the data. An important question is thus how to
extract a small number of relevant features that can be used
to explain the exceptional properties of an outlier, without
falling trap to the “data snooping bias” [37]. This means, by
observing the data from these selective features, an outlier
must be well discriminated from common inliers. It is worth
noting that, although several algorithms for outlier detection
in subspace projections have been developed recently, they
all attempt to explore descriptive feature subspaces of regular
inliers to facilitate the process of computing deviation (i.e.,
anomaly) degrees for outliers. They are hence less successful
in uncovering the most discriminative features to distinguish
outliers from regular patterns.

In order to illustrate the importance of uncovering the
most discriminative features, let us consider a motivating
real-world example using a set of images from the AR Face
database [28], shown in Figure 1. Intuitively, two images at
the outer left and outer right are anomalous. By analyzing
the descriptive features of these images, a method based
on principle component analysis (PCA), for example, can
show that the images all share the same descriptive features
as characterizing for the same person and two outliers are
the ones deviating most from these features. However, by
looking for the discriminative features, it is possible to
show that the outer left image is an outlier based on the
features positioned at the mouth and central face areas
whereas the outer right image is an anomaly due to the
appearance of the glasses around the eye features. Notice
that these two outliers share similar nearby inliers; yet the
features identifying them as exceptional are clearly different
in both cases. Therefore, solely relying on the descriptive



Figure 1. The outer left image is an outlier based on the discriminative
features around the central face area whereas the outer right one is an outlier
relied on the discriminative features around the eye area. Images from the
AR face database [28].

features of majority patterns may not help the user to
fully understand why the objects are anomalous. Instead,
exploring the discriminative features would yield the best
features justifying the distinctiveness of outliers.

In this paper, we present a novel algorithm for exploring
and characterizing local outliers in high dimensional nu-
merical datasets. Our algorithm is not only able to provide
a ranking list over the outlier degrees of data objects but
also discovers a succinct subset of discriminative features
to explain why an outlier is exceptional compared to the
majority patterns. The proposed technique takes a graph
embedding approach in which a neighborhood graph is con-
structed to model the geometrical structure of the underlying
data distribution. For learning a subspace in which an outlier
candidate can be discriminated from regular objects, our
algorithm exploits: (i) the local graph connections between
the outlier candidate and its nearby inliers; and (ii) the graph
connections within the set of its neighboring inliers. Using
the notion of graph Laplacian combined with the L2-norm
shrinkage, we show that the algorithm can learn an optimal
projection that transforms both the outlier candidate and its
nearby inliers to a reduced dimensional subspace of which
the outlier is optimally discriminated from the neighbors (by
maximizing (i)) while at the same time retaining the natural
structure of its neighboring inliers (by minimizing (ii)) to en-
sure the quality of outlier explanation. The induced subspace
thus provides all essential information for the anomalous
properties of the outlier. The proposed technique possesses
many appealing properties: (1) it makes no specific assump-
tions on the statistical distribution regarding the original
data structure; (2) it has a solid mathematical background;
(3) it guarantees the solution for the induced subspace to
be globally optimal. Through experimental analysis over a
number of real world datasets, we demonstrate the appealing
performance of our proposed algorithm not only over the
outlier ranking quality against most well-known algorithms,
but also over the set of discriminative human-interpretable
features. To our knowledge, the proposed algorithm is the
first that exploits discriminative features for both outlier
detection and interpretation, providing more insights into
outliers and thus leading to a better understanding of why
the outliers are exceptional patterns.

II. RELATED WORK

According to the variety of application domains for
outlier detection, such as bioinformatics, direct marketing,
or various types of fraud detection, many algorithms have
been developed to deal with this problem. Depending on
whether the labels for outliers (or inliers) are available or not,
the algorithms can be classified as supervised [35], semi-
supervised [15], or unsupervised [9] techniques. Alterna-
tively, w.r.t. the analyzed data types, they can be categorized
as dealing with spatial temporal data [12], structured graph
data [4], transactional/categorical data [33], or numerical
data [26]. Here, we focus on the unsupervised setting on
numerical high dimensional datasets [37].

The seminal database-oriented method DB-outlier [21]
requires two parameters, distance d and data fraction p. An
object is considered an outlier if at least a fraction p of
all instances have a distance > d. In other studies [30],
a similar definition is used where an object is viewed as
an outlier if its distance to the k-th nearest neighbor is
sufficiently large, usually greater than a given threshold d.
It can be seen that both definitions are related and that
the identified anomalous objects are called global outliers
since their properties w.r.t. the given thresholds (e.g., d,
p) are compared with all other objects of the data set. In
contrast, so-called “local” techniques seek local outliers,
whose outlier degrees are defined w.r.t. their neighborhoods
rather than w.r.t. the entire data set [32]. In the LOF
model [9], the (relative) density around an object is loosely
estimated as the inverse of the average distances from the
object to its nearest neighbors and its local outlier factor is
calculated based on the ratio between its density and the
average density computed from all its k neighbors. There
are several studies attempting to find outliers in spaces
with reduced dimensionality [37]. Some of them consider
every single dimension [19] or every combination of two
dimensions [16] as the reduced subspaces, others [20,29]
go further in refining the number of relevant subspaces,
assuming either [29] that outliers exist in subspaces with
non-uniform distributions, or [20] that outliers appear in
subspaces exhibiting high dependencies among their re-
lated dimensions. These studies, either exploring subspace
projections [20,29] or subspace samples [16,19,27], appear
to be appropriate for the purpose of outlier identification.
Nonetheless, as the outlier score of an object is aggregated
from multiple subspaces, it remains unclear which subspace
should be selected to interpret the outlier. In addition, the
number of explored subspaces for every object should be
large in order to obtain good outlier ranking results. These
techniques are hence closer to outlier ensembles [31,36] than
to outlier interpretation. The SOD method [23] pursues a
different approach, seeking an axis-parallel hyperplane (w.r.t.
an object’s neighbors), spanned by the attributes with the
highest data variances. The anomaly degree of the object



is computed in the space orthogonal to this hyperplane.
The COP method [25] generalizes this idea by looking for
the arbitrarily oriented subspaces of highest variance and
further provides an error vector for each identified outlier
as a form of explanation. The ABOD model [26] exploits
the variance of angles among objects to compute outlying
degrees. Intuitively, an outlier lying outside of clusters tends
to exhibit a relatively low variance of angles between pairs
of vectors pointing to other objects. ABOD also provides an
error vector as an outlier interpretation.

III. LOCAL OUTLIERS WITH GRAPH PROJECTION

A. General concepts

In many practical applications, data are collected and
described in high dimensional spaces. However, many di-
mensions or features can be irrelevant for outlier explo-
ration and in many cases the intrinsic structure behind the
observed data can be captured by only a small number
of latent regularities. The success of an outlier mining
algorithm therefore depends strongly on how these structures
are captured and represented. For our specific problem of
identifying and interpreting local outliers, capturing the local
structure of the data is more important than capturing the
global structure (e.g., the global data variance) since the
outlierness of each object is depending on the deviation of
the object’s characteristic from the characteristic of its local
neighborhood. We therefore adopt in this work a graph based
model to capture the local geometry.

Following this approach, given a collection of data objects
X = {x1,x2, . . . ,xN} where each xi is represented as
a vector in RD (a data space with D dimensions), we
construct an undirected graph G(V,E) to model the local
neighborhood relationships among all data instances. Each
vertex vi ∈ V corresponds to a data object xi ∈ X . With
k as a supplied parameter, we place an edge E(i, j) ∈ E
between two vertices vi and vj if the corresponding object xi
is among the k nearest neighbors of object xj or inversely,
xj is among the k nearest neighbors of object xi. In addition,
for each edge E(i, j) connecting vi and vj , we compute
a non-negative weight K(i, j) to reflect how strong the
connection between vi and vj is, or equivalently, how similar
xi and xj are. This weight represents the neighborhood
relationship between two objects xi and xj , and we adopt
the widely used radial symmetric Gaussian kernel function1

for this task given by: K(i, j) = 1
(2πσ)D/2 exp

(
−‖xi−xj‖2

2·σ2

)
(with σ being the width of the Gaussian adapted from the
data [14]) if vi, vj are connected; and K(i, j) = 0 if vi,
vj are not connected (i.e., xi and xj are not among their k
nearest neighbors either way). This forms an affinity matrix
K with K(i, j) ≥ 0. This matrix K is not only symmetric

1Other kernel functions can also be used to compute K(i, j), e.g., the
dot product if xi, xj are the term vectors in document data.

but also sparse. The graph is fully connected and captures the
local neighborhood property of every observed data object.

B. Objective function
A similar graph structure has been used in manifold

unsupervised learning [6,34] or extended to some supervised
settings [10,13] where the objective is to capture the data
structures by using a small number of projected dimensions.
These approaches, however, cannot be directly applied to
the outlier exploration problem since the structures behind
the observed data can be multiple clusters rather than a
single manifold whereas the labels over regular and outlying
objects are also not available to enable a supervised learn-
ing. For uncovering local outliers along with discriminative
(relevant) features to explain each one as an anomalous
object, a local projection of the data is more important than
a global projection [6,13] since different outliers could be
discriminated by different subsets of original features.

We develop an objective function that can learn an optimal
subspace to discriminate an outlier well from nearby inliers
while retaining the important structure of the data. Toward
this goal, for each data instance xi, we extract from the
above global graph a neighboring subgraph G(i) which com-
prises the vertices corresponding to the k nearest neighbors
of xi together with the weights and edge connections among
them. This subgraph captures the local geometrical data
structure of xi’s vicinity. We denote the weights and edges
of the subgraph by K(i) and E(i), respectively. By space
transformation, we would like to find a projection that maps
the objects of a local substructure into a lower dimensional
subspace such that the geometrical data structure is retained
as much as possible. More specifically, let yp, yq in the
lower dimensional space Rd be the mapping points of xp,
xq , the neighboring objects of xi, in the original space RD
(with d� D), we form our first objective function:

minimize
∑
p

∑
q

‖yp − yq‖2K(i)
(p,q) (1)

If xp and xq are close neighboring objects in the orig-
inal space, the weight K(i)

(p,q) between them is high and
this objective function will penalize a large value if their
respective mapping instances yp and yq are mapped far
apart in the new transformed subspace. Therefore, mini-
mizing this function is equivalent to optimally preserving
the local structure of nearby instances around xi and the d
transformed dimensions are their most descriptive features
in our reduced dimensional subspace. On the other hand, by
considering xi as an outlier candidate, its mapping point in
the new transformed subspace should be as far as possible
from its nearby mapping neighbors: if xi is truly an outlier,
it should be well discriminated from its neighboring objects.
Our second objective function formulates this:

maximize
∑
p

‖yi − yp‖2K(i)
(i,p) (2)



Again, yi is the mapping point of xi in our reduced
dimensional subspace and this function will incur a high
penalty if xi and xp are far part in RD but being mapped
close in this Rd subspace.

To gain more insights into our two objective functions, let
D(i) be a diagonal matrix whose entry D

(i)
pp =

∑
qK

(i)
(p,q)

and let W be the matrix having size of D×d that maps xp’s
into yp’s.2 The squared vector norm in our first objective
function (Eq. (1)) can be written as a function of W :

Jm(W ) =
∑
p

∑
q

‖WTxp −WTxq‖2K(i)
(p,q)

=
∑
p

∑
q

tr
(
WT (xp − xq)(xp − xq)

TW
)
K

(i)
(p,q)

= tr

(∑
p

∑
q

(
WT (xp − xq)K

(i)
(p,q)(xp − xq)

T
)
W

)
= 2 · tr

(
WTX(i)D(i)X(i)TW

)
− 2 · tr

(
WTX(i)K(i)X(i)TW

)
(3)

where tr(.) is the trace of a matrix and X(i) is the matrix
having the k nearest neighbors of xi as its column vectors.
By defining L(i) = D(i) − K(i) as the Laplacian matrix
of our equation and ignoring the constant, we are able to
re-write our first objective function:

Jm(W ) = tr
(
WTX(i)L(i)X(i)TW

)
(4)

For the second objective function, note that only the relation-
ship between xi and its k nearest neighbors is of concern.
The weight entries thus form a vector K(i)

(i,.), rather than
a full matrix. However, in order to be consistent with the
matrix form in our first objective function (Eq. (4)), we
represent it as a sparse matrix by:

K(i′) =


0 K

(i)
(i,2) · · · K

(i)
(i,k)

K
(i)
(2,i) 0 · · · 0
...

...
. . .

...
K

(i)
(k,i) 0 · · · 0


and consequently, D(i′) as the diagonal matrix:

D(i′) =


∑
pK

(i)
(i,p) 0 · · · 0

0 K
(i)
(i,2) · · · 0

...
...

. . .
...

0 0 · · · K
(i)
(i,k)


Then, keeping in mind the symmetry of the matrix K(i′) and
all its entries being zero except for those in the first row and

2Please note the notation difference between D(i) and dimension D.

column, we can re-phrase our second objective function in
terms of optimizing the projection matrix W :

JM (W ) =
∑
p

∥∥WTxi −WTxp
∥∥2K(i′)

(i,p)

=
1

2
×
∑
p

∑
q

∥∥WTxp −WTxq
∥∥2K(i′)

(p,q)

= tr
(
WTX(i′)

(
D(i′) −K(i′)

)
X(i)TW

)
= tr

(
WTX(i′)L(i′)X(i′)TW

)
(5)

in which from the first row to the second row of the equation,
we have included xi as the first column of X(i′) and thus
the indices p, q (in the 2nd row) also go through it. It is
crucial to mention here that while we want to learn a single
transformation matrix W for both objective functions, the
matrix X(i) used in Eq. (4) is different from X(i′) in Eq. (5)
by the single (first) column (i.e., xi). A simple cure for this
matter therefore is to also add xi as the first column of
X(i), making two matrices X(i) and X(i′) identical, and
accordingly, a 0-vector also must be added to L(i) as its
first row and column, yielding the consistency of matrix size
matching in Eq. (4).3 For simplicity, we use the notation
X(i) and in combination with the results above, the two
objective functions can be combined into a single one:

maximize J(W ) = JM (W )− Jm(W )

= tr
(
WTX(i)L(i′′)X(i)TW

)
subject to WTX(i)D(i)X(i)TW = I

and wT
pwq = 0 for p 6= q (6)

where we have used L(i′′) to denote (L(i′)−L(i)) and used
the linear map property of tr(.); and vectors wp, wq are
columns of W . The first constraint is added as we need
directions of columns in W rather than their magnitude
(since X(i) is projected onto them) whereas the second
constraint is incorporated to impose the independence among
projected dimensions.

As observed, for each data instance xi, our objective is
to learn a low dimensional mapping subspace in which xi,
if it is an outlier, is well discriminated from its nearby
objects while at the same time the geometrical structure of
the data is preserved. This approach can be seen as closely
related to large-margin nearest-neighbor (LMNN [8]), in
which a similar projection is learned to separate classes in a
supervised setting; but in contrast to LMNN we try to learn
such a projection for every single object to separate it from
its neighbors. The appropriate original features selected in
the new transformed subspace are defined by the coefficients
learnt from the columns of the projection matrix W . A naïve

3This is equivalent to adding a vector with 1st entry being equal to K(i,i)
(corresponding to xi) and zero elsewhere as the first row and column of
the matrices K(i) and D(i).



approach is to restrain W ’s column entries to be either 1 or
0 (i.e., corresponding original features are selected or not
selected) and choose W which leads to the largest value
in Eq. (6). Nonetheless, this search process is discrete as
features are either retained or discarded, and the number of
subspaces to be explored is also exponential in the number of
features, making this approach computationally expensive.
We thus deal with this challenge in a more tractable way
by imposing the penalty on the norm of each column of W ,
leading to the final optimization function:

W ∗ =arg max
W

{
tr
(
WTX(i)L(i′′)X(i)TW

)
− αWTW

}
subject to WTX(i)D(i)X(i)TW = I

and wT
pwq = 0 for p 6= q (7)

Incorporating the penalty retrained on the vector norm is
often called the regularization and is well studied in the
statistics community [18]. The parameter α ≥ 0 is used to
apply the amount of shrinkage imposed on W ’s columns.
Though other forms, like the L1 norm penalty, can also be
used here, we employ the quadratic L2 norm for the ease
of optimization. The results between L1 and L2 penalties
are not much different as long as the number of selective
features is small [18], yet using the L1 penalty makes
the solutions nonlinear and thus requires more complex
techniques (e.g., quadratic programming) to optimize. We
show in the following section a closed form solution for our
optimization setting in Eq. (7).

C. Subspace learning

In solving the trace optimization associated with con-
straints, we can use the Lagrange multipliers method. Eq. (7)
can be recast as the Lagrangian of the following problem:

L(W,Λ) =WT
(
X(i)L(i′′)X(i)T − αI

)
W

− Λ
(
WTX(i)D(i)X(i)TW − I

)
(8)

in which Λ is a diagonal matrix, its entries being the
Lagrange multipliers. Solving this objective function for
W will satisfy our added constraints over W whereas the
columns of W are also naturally orthogonal to one another
(as shortly presented). Taking the derivative of L with
respect to W and equating it to zero gives us:(

X(i)L(i′′)X(i)T − αI
)
W = ΛX(i)D(i)X(i)TW (9)

This equation has the form of a generalized eigenvalue
problem. Nonetheless, notice that the right hand side matrix
X(i)D(i)X(i)T is not full rank since, in general, we have
the number of data dimensions exceeding the number of
nearest neighbors (actually, plus 1 as xi has been included in
X(i)). Hence, this matrix is not directly invertible. Dealing
with this issue, it is better to decompose X(i) into three
matrices X(i) = U (i)Σ(i)V (i)T , of which columns in U (i)

and V (i) are the left and right singular vectors and the
diagonal elements in Σ(i) are the singular values, and X(i) is
approximated by keeping the most significant singular values
in the diagonal matrix Σ(i).4 By denoting W̃ = U (i)TW and
X̃(i) = Σ(i)V (i)T , it is straightforward to see that:

WT
(
X(i)L(i′′)X(i)T − αI

)
W

= W̃T
(

Σ(i)V (i)TL(i′′)V (i)Σ(i) − αI
)
W̃

= W̃T
(
X̃(i)L(i′′)X̃(i)T − αI

)
W̃ (10)

and

X(i)D(i)X(i)TW = W̃TΣ(i)V (i)TD(i)V (i)Σ(i)W̃

= W̃T X̃(i)D(i)X̃(i)T W̃ (11)

Rather than directly seeking W from Eq. (8), we find it via
the equation W = U (i)W̃ whereas W̃ is found from:(

X̃(i)L(i′′)X̃(i)T − αI
)
W̃ = ΛX̃(i)D(i)X̃(i)T W̃ (12)

In order to show the matrix X̃(i)D(i)X̃(i)T on the right hand
side being nonsingular, we need the following proposition:

Proposition 1: Let V (i) be our matrix with orthogonal
column vectors, then its row vectors are also orthogonal,
i.e., V (i)V (i)T = I

Proof: Let a be an arbitrary vector, we need to show
V (i)V (i)T a = a. It is true that V (i)T V (i) = I as V (i)’s
column vectors are orthogonal. Therefore, the inversion of
V (i) is equal to V (i)T and given a, there is a uniquely
determined vector b such that V (i)b = a. Consequently,

V (i)V (i)T a = V (i)V (i)T V (i)b = V (i)b = a

It follows that V (i)V (i)T = I since a is an arbitrary vector.

Theorem 1: Let B be the matrix X̃(i)D(i)X̃(i)T in which
X̃(i) = Σ(i)V (i)T, then B is non-singularity.

Proof: The proof of this theorem is straightforward
given Proposition 1 and keeping in mind that both D(i) and
Σ(i) are diagonal positive semi-definite matrices.

By defining A = (X̃(i)L(i′′)X̃(i)T − αI), it follows that:

B−1AW̃ = ΛW̃ (13)

This is a generalized eigenvalue problem where we can find
the solution by first looking for the largest eigenvalue λ1 and
the corresponding eigenvector w̃1. Then, the second largest
eigenvalue/eigenvector λ2 and w̃2 are found by taking the
constraint w̃T

1 w̃2 = 0 and so on. Overall, the diagonal
values in Λ and the corresponding column vectors in W̃ are
the eigenvalues (in descending order) and the eigenvectors,
respectively, of B−1A. It is further observed that if Λ and
W̃ are the optimal solutions for Eq. (12), then Λ and

4In this work, we consider singulars whose values are smaller than 10−5

as 0 and remove them from Σ(i).



W = U (i)W̃ are also the optimal solutions for Eq. (9).
Additionally, since U (i)U (i)T = I , column vectors in W
are also pairwise orthogonal and they are finally our globally
optimum solution.

D. Outlier score computation

Generally, our solution developed above can find up
to d, equal to the rank of matrix X(i), as the number
of dimensions to which the outlier candidate xi can be
discriminated from its neighboring objects. Nonetheless, it is
noted that the importance degrees of all induced dimensions
(i.e., eigenvectors) are not the same and essentially can
be assessed by their corresponding eigenvalues. Since the
eigenvalues and eigenvectors are going in pairs, by ordering
the eigenvalues in the descending order, the corresponding
top eigenvectors are thus the most significant dimensions.
Let d be the number of top eigenvectors selected from
W and let X(i) comprise xi’s neighbors as its columns,
then the outlier score (OS) of xi can be computed as the
statistical distance from xi to its neighboring objects in the
transformed space as follows:

OS(xi) =
1

d

d∑
p=1

√√√√max
{(

wT
p xi − 1

k

∑
(wT

pX
(i))
)2
, σ2
p

}
σ2
p

in which σp is the standard deviation of the neighboring
objects projected onto the eigenvector wp. The variance in
the second term of the max operation is used as the lower
bound to constrain the projection of xi not too close to the
projected center. This can happen when xi is a regular object
surrounded by similar other regular objects in the same data
cluster. Thus, the smallest value of the defined outlier score
is limited by 1. The higher the value of OS(xi), the more
xi deviates from its neighbors.

Let us note that, according to the categorization of local
outlier detection methods [32], the score OS is an outlier
model of first order locality.

E. Final discriminative features

Using the leading eigenvectors helps to visualize the
deviation of an outlier candidate xi, along with the ge-
ometrical structure of its nearby objects, in the lower d-
dimensional subspace. This visualization, however, does not
directly show the user which features in the original space
are the most crucial in discriminating xi as an excep-
tional object. Nevertheless, recall that since our approach
in this work is the space transformation, the coefficients
of eigenvectors therefore unveil how the original features
have been combined to induce the optimal subspace. In
other words, they contain essential information regarding
the features contributing most to the formation of the new
transformed space. Additionally, we assume that xi, as a
local outlier, can be linearly separated from its neighbors,
the dimensionality of such a transformed subspace might

(a)

(b)

(d)

Original image Eigenvector Discriminative features

(c)

Figure 2. Discriminative features for outliers from the AR face images.
Graphs in the first two rows (a-b) relate to the true two outlying images
whereas graphs in the last two rows (a-b) relate to the two regular images
(k = 5). See text for explanation.

be as small as one. In this case, the first eigenvector of
Eq. (9), corresponding to the largest eigenvalue of the B−1A
matrix, will be the optimal direction. Let w denote this
leading eigenvector and let the absolute values of its entries
be ordered decreasingly. It would be expected that there
exists an appreciable difference in the absolute coefficients
of relevant and irrelevant features due to the regularization
over the w’s L2 norm. As such, in explaining the exceptional
properties of the object xi, we select top q original features
corresponding to the top q largest absolute coefficients in w
such that |wq|−|wq+1| ≥ 2× 1

q−1
∑q−1
i=1 (|wi|−|wi+1|). This

means the difference in coefficients between the relevant and
irrelevant features is larger at least by a factor 2 than most
of the differences between two ordered relevant features.
Nonetheless, for cases where such a gap of difference is
not very prominent, we also provide the user a parameter γ,
whose value is within the range (0, 1), to generate the set
of q features such that

∑q
i=1 |wi| ≥ γ ×

∑D
j=1 |wj | (in this

work, we typically choose γ = 0.8). It is worth mentioning
that, since each outlier may have different features discrim-
inating it as an anomalous object, the value q might also be
different across different outliers.

To illustrate the selection of discriminative features for
outlier explanation, we continue with our example on the AF
face data set presented in Section 1 (images having size of
32×30 pixels are viewed as vectors xi’s of 960 features). In
Figures 2(a-b), we show two anomalous images having the
highest local outlier scores of 1.838 and 1.643. The leading
eigenvector (reshaped into 32× 30 images), onto which the
outlying image and their neighbors are projected, is shown
in the second column and the final set of relevant features
are shown in the third column of each figure. As observed



from Figure 2(a), the most significant coefficients of the
leading eigenvector w are the ones around the eye area and
by our proposed method based on the significant difference
between features’ coefficients, the top 68 features (i.e.,
original pixels) have been selected as the relevant features
explaining the image as an outlier. Likewise, for the second
anomalous image shown in Figure 2(b), out of 960 original
features, 43 pixels have been selected to interpret it as an
exceptional object. Though this set of discriminative features
are not concentrated compared to that of the first outlier and
consist of some less relevant pixels (around the head shape),
they are clearly intuitive and consistent to the “anomalous”
expression of the human face. Due to smiling, the features
around the mouth, cheek-bone and eyes have been learnt
with the most significant coefficients and consequently our
algorithm has selected them as the discriminative features to
characterize for its anomalous properties. To provide more
insights, we further plot the features selected for the next two
images in the outlier ranking list, having OS respectively of
1.182 and 1.159, in the Figures 2(c) and (d). As observed,
no special features within the face area have been selected
since these images are truly regular and they are very much
similar to other images in this example.

F. Algorithm Complexity

Our algorithm developed above is named LOGP which
stands for Local Outliers with Graph Projection and its
computation complexity is analyzed as follows. LOGP first
needs to build the global graph which requires the calcula-
tion of the nearest neighbors and the K matrix, which takes
O(DN2) in the worst case or can reduce to O(DN logN)
if the implementation of the k-D tree data structure is
used [7]. The size of the matrix X(i) is D × k and its
singular value decomposition takes O(Dk log(k)) with the
Lanczos technique [17]. Likewise, the eigen-decomposition
of the matrix B−1A takes O(D2 logD) since its size is
D × D. As we compute these steps for all instances to
render the outlier ranking list, the computation amounts to
O(DNk log(k) +D logD)). The overall complexity is thus
at most O(DN(logN + k log(k) +D logD)).

IV. EVALUATION

A. Methodology

To evaluate the performance of the proposed method, we
compare it on multiple real world datasets to a representative
selection of established methods: (1) LOF [9] which is one
of the most well known algorithms in seeking local outliers
from varying density data; (2) SOD [23] which seeks outliers
in axis-parallel subspaces; (3) COP [25] which finds outliers
in arbitrarily oriented subspaces; (4) ABOD [26] which dis-
covers outliers based on angles between vector triples in high
dimensional spaces; and (5) HiCS [20] which seeks outliers
in multiple subspaces. All reference implementations are
available in ELKI [2].

To evaluate the algorithm performance, we use the well-
established receiver operating characteristic (ROC) curve,
which visually shows the relationship between the true
positive rate (y-axis) and the false positive rate (x-axis). The
optimal curve goes straight up the y-axis, only then right.
A random result will be close to the diagonal, while values
below the diagonal indicate a reverse ordering. This curve
can be summarized into a single value when desired, known
as the area-under-curve, ROC AUC.

An inherent problem in evaluating algorithm performance
of unsupervised methods is parametrization. Reporting re-
sults for optimal parameters only is an unrealistic scenario,
as it is not trivially possible to find these parameters for
a real problem. Instead, we try a best-effort-approach to
choose a realistic set of parameters. Where applicable, we
prefer a simple maximum ensemble approach as discussed
for LOF in the original publication [9] and pointed out as
being an early, model-centered, ensemble approach recently
[3]. This ensemble approach will not be able to combine
different algorithms [24,31] but is reasonable to use with
slightly different parametrizations of the same method. For
LOF, SOD, and LOGP we construct such a object-wise
maximum ensemble [3] for k = 5 . . . 25, which is a
reasonable parameter range for these algorithms. The SNN
neighborhood size ` for SOD was set to the same value as
k and α = 0.8. With COP, choosing small values of k is not
sensible, as k must be larger than the dimensionality for local
PCA [1]. Instead, we chose k = 3 · D. For the CMU faces
data set (which has many more dimensions than instances),
we first reduced the dimensionality to 8 using PCA, then
chose k = 24. To achieve more stable results, COP was
configured to use robust weighted PCA [22] locally and the
χ normalization. For ABOD, we use the exact version (since
the data sets are small enough) with polynomial kernel of
degree 2. For HiCS, we set the various parameters to the
values suggested by the authors [20]; inside HiCS we used
LOF with k = 10. We do not use an ensemble approach here,
as HiCS itself already is an ensemble method [3,37] and it
did not further improve results in preliminary experiments.
Furthermore, HiCS already suffers from a high runtime.
For the proposed method LOGP, we usually set α = 0.1
in Eq. (8), and use an object-wise minimum ensemble to
combine the results of k = 5 . . . 25.

B. CMU Face data set

The first real world data set we use to demonstrate the
performance of all algorithms is the high dimensional CMU
Face data set [5]. This data set contains grayscale images
captured from 20 people. There are up to 32 images for
each person covering every combination of the 4 facial
expressions (neutral, happy, sad, angry), 4 head positions
(straight, left, right, up), and 2 eye states (open and sun-
glasses). Each image has a size of 32 × 30 pixels which
can be interpreted as vectors in a space of 960 dimensions.



Figure 3. Nine images selected from a person in the CMU Face data set,
where the first image is labelled as an outlier due to the appearance of the
sunglasses.
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Figure 4. The ROC curve performance of all algorithms on the outlier
detection rate over the CMU face database.

Instead of randomly generating artificial outliers or manually
modifying some images to be outliers, we adopt a more
natural way by downsampling images with sunglasses from
each person to 1 and keeping all remaining frontal images
(without sunglasses, and not looking left or right) as regular
objects, resulting in a data set with 20 outliers and 157 inliers
(some combinations are missing from the original data). For
illustration, several randomly selected images from the same
person are shown in Figure 3 where the first image is labelled
as a ground-truth outlier.

Outlier identification: In Figure 4, we plot the ROC
curve performance of all algorithms. For each curve, we fur-
ther report the area under the curve (AUC) which provides a
way to numerically compare the algorithms’ performance in
Table I. For SOD, choosing ` = k yields better performance
than setting ` to the estimated class size of 8 images per
person. For COP, we reduced the data set dimensionality
to 8 dimensions using PCA. For HiCS, we had to increase
the candidate cutoff parameter to 1000 because of the high
dimensionality to yield meaningful results. For LOGP, we
disabled regularization by using α = 0 to decrease runtime,
and we had to estimate the σ2 kernel bandwidth manually.

As seen from this figure, LOGP performed best with
respect to the ROC AUC metric, and in particular on the
first few items only (i.e. with a false positive rate of less

Table I
ROC AUC RESULTS ON CMU FACE DATABASE.

algorithm key parameters AUC
ABOD polynomial kernel of degree 2 .920
PCA + COP PCA to 8 dimensions, COP k = 24 .825
HiCS + LOF 1000 candidates per iteration, LOF k = 10 .670
LOF max score for k = 5 . . . 25 .885
SOD α = 0.8, max score for ` = k = 5 . . . 25 .786
LOGP α = 0, min score for k = 5 . . . 25 .930

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5. Five (a-e) outlying images (1st column) along with their leading
eigenvectors (2nd column) and the discriminative features (3rd column)
identified by LOGP. Images in (f) relate to a false positive, a normal object
with a high outlier score. The last two rows in (g) show SOD’s 5 top ranked
outlying images and their corresponding subspace features.

than 10%). ABOD, designed for high-dimensional data, also
worked very well. Note that a simple changing variable in
solving Eq. (7) shows more stable results for this experiment
and since the bias-tradeoff technique [14] is less suitable
for very high dimensional data, we have chosen σ = 3.
LOF, while not being a subspace method, performs very
well in this parameterization (taking the maximum score
of each object for k = 5 . . . 20, which is maybe best
explained with the gains from an ensemble approach. While
HiCS is designed to find informative subspaces, it does not
scale well to this very high dimensionality. It tries to find
subspaces bottom up, but the discriminative subspaces are



of medium dimensionality here (i.e. multiple pixels) and
cannot be easily identified in 2 dimensions. However, in
order to avoid exponential complexity, HiCS only retains
a limited set of subspace candidates at each iteration: out
of the

(
960
2

)
= 460320 2-dimensional subspace candidates it

only retains a fixed (parameterizable) number of 100−1000.
If this subset is not chosen well, it becomes hard to find
the most relevant subspaces in higher dimensionality. SOD
suffers from a different problem of data set size: both to
find a reasonable neighbor set and to compute the relevant
subspace, it needs much more neighbors than this small but
high-dimensional data set can provide.

Outlier interpretation: We further explore the set of
discriminative features generated by our LOGP algorithm
for each of its 20 top uncovered outlying images. We show
the 5 top outliers, along with their uncovered discriminative
features, in Figures 5(a-e). As expected, LOGP performs
quite well with this very high dimensional data set where
most features chosen to explain the anomalous images
are around the eyes area, due to the appearance of the
sunglasses. Furthermore and surprisingly, among these top
discovered outliers, LOGP also ranks high an image which
is shown in Figure 5(f). Note that, according to our ground
truth that labels pictures with sunglasses as outliers, this
image is a regular object rather than an outlier; yet by
inspecting the set of discriminative features discovered by
LOGP, this image is clearly outstanding as an exception
compared to other images due to a person unintentionally
appearing at the background. As visualized from the last
graph of Figure 5(f), his white T-shirt is well captured as
the discriminative features for this outlying image by our
algorithm.

Recall that SOD, COP, and HiCS are all subspace-based
techniques, of which COP uses error vectors to characterize
outliers whereas HiCS produces multiple subspaces for a
single outlier. We therefore select SOD for visualizing its
subspace for each uncovered outlier. In Figure 5(g), we
show its top five outlying images along with the cor-
responding subspaces in which these outliers have been
found. As observed, SOD performance also seems to be
effective with 3 true outlying images ranked top. It even
further gives the image with a person at the background
the highest outlier score. Nonetheless, by looking at the
feature subspaces generated by the SOD, we found that,
unlike the LOGP method, it is hard to explain why these
images are exceptional. The reason, as justified above, is the
fundamental difference in the subspace learning objectives
of two approaches. We therefore do not attempt to compare
their uncovered subspaces in the subsequent experiments.

C. Pen digit data set

We next provide experiments on the pen digit data set [5],
consisting of 1602 data samples, where each sample corre-
sponds to a hand written digit. As a digit is being written
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Figure 6. ROC curve performance of all algorithms on the outlier detection
over the pen digit data set.

Table II
ROC AUC RESULTS ON PEN DIGITS DATABASE.

algorithm key parameters AUC
ABOD polynomial kernel of degree 2 .959
COP COP k = 3 · D = 48 .961
HiCS + LOF 100 candidates per iteration, LOF k = 10 .922
LOF max score for k = 5 . . . 25 .952
SOD α = 0.8, max score for ` = k = 5 . . . 25 .972
LOGP α = 0.1, min score for k = 5 . . . 25 .959

on a pen-based tablet, 8 (x, y) positions of the pen are
recorded and they consequently form the 16 attributes of the
digit. Similar to the CMU face data set, we keep instances
from two randomly selected digits as regular objects while
downsampling to 2 instances from each of 8 remaining digits
as outliers, yielding the data set with 16 anomalous digits
and 334 inliers from digits 1 and 5.

Outlier identification: In Figure 6, the performance in
terms of ROC curve have been plotted for all algorithms.
On this data set, all algorithms fared very well (indicating
that we chose reasonable parameterization). LOGP came in
at a close third after SOD and COP, and tied with ABOD.
HiCS performance was much better (likely due to this data
set only having 16 dimensions), but not competitive to the
LOF ensemble. The surprising winner on this data set was
SOD. Note that, however, the score is dominated by when
the methods find the last outlier. LOGP is the first method
to have found 15 out of 16 outliers, but late at finding all
outliers. Such differences in algorithmic performance are not
adequately reflected by the ROC AUC measure, and should
not be considered significant.

Outlier interpretation: To save space, we report in
Figures 7(a-e) the five top ranking anomalous digits together
with the features selected to discriminate them as outliers.
In these figures, we show the true label above each plotted
digit (top graph) whereas its corresponding discriminative
features are marked with labels (bottom graph). Compared
to the CMU face data set, it is slightly harder to observe the
set of discriminative features; however, combining both the
visualization over the digits and their set of discriminative
features gives us the explanation as follows. First, due to
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Figure 7. Outlying hand-written digits uncovered by LOGP. Two samples from distributions of regular digits 1 and 5 are shown in (a). Top five outlying
digits are shown in the (b-f)’s top row, whereas their discriminative features (with labels) are shown in the bottom row. A regular digit ranked as one of
LOGP’s top outliers is shown in (g). For graphs plotting the digits, the horizontal and vertical axes correspond to the x- and y- coordinates of the pen-based
tablet. For graphs plotting the features, the horizontal and vertical axes correspond the feature index and feature coefficient respectively.

the randomness when the data set is created, all instances
from two digits 1 and 5 have been labelled as regular
objects whilst each 2 of the remaining digits have been
selected as hidden outliers. Then, by further inspecting the
data, we found that the digits 7 and 4, out of the top five
outlying digits shown in Figures 7(b-f), are closest to the
data distribution of digit 1 and thus they can be viewed
as the local outliers w.r.t. this distribution. Likewise, the
digits 6 and 9 are closest to the distribution of digit 5
and hence are the anomalous objects w.r.t. this distribution.
For the sake of discussion, we also plot in Figure 7(a) the
popular writing of the digit 1 (top graph) and 5 (bottom
graph). Now, selecting the digit 7 shown in Figure 7(b)
as an example, its most discriminative features are the y-
coordinates of the last 3 strokes compared to that of digit
1. More specifically, while these strokes in digit 7 go down
to the bottom, up right then left, making y6 = 0, y7 = 0.35
and y8 = 0.4, these stokes go down constantly in digit 1,
resulting in y6 = 0.5, y7 = 0.2 and y8 = 0. This writing
style clearly distinguishes the digit 7 from that of the popular
digit 1. It is further observed that this digit resembles the
writing style with the digit 1 on their beginning strokes (both
starting from top left then going right). Correspondingly,
LOGP has learnt the leading features (i.e., from x1, y1 to
x3, y3 ) with coefficients close to 0 and consequently, they
are well excluded from the set of discriminative features for
the digit 7. A similar interpretation can also be applied to
the outlying digit 4 w.r.t. digit 1, where its y-coordinates of
3rd, 4th and 5th strokes go right, up left then down left (i.e.,
y4, y5, y6, y7), obviously contrasting to those of digits 1’s
which go down gradually.

For the outlying digit 9 (Figure 7(d)) which is closest to
the distribution of digit 5, the most discriminative feature is
y6. It is obviously seen that while the value of y6 in digit
9 positions in the upper half, that value in digit 5 locates in
the lower half. The next discriminative feature is x8 which
locates close to x = 0.5 in digit 9 but close to x = 0 in digit
5. Likewise, we can observe the clear difference in the other
selected features y5, x7 and y7 that all helps to distinguish
digit 7 from digit 1.
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Figure 8. ROC curve performance of all algorithms on the outlier detection
over the English letter data set.

For the features discriminating the two outlying examples
of digit 6 in Figures 7(e-f) from the 5’s distribution, y7
tends to be the top selected feature. As observed, its value
in the both outlying digits 6 locates close to y = 0.5 but
close to y = 0 in the digit 5. The subsequent discriminative
features can be the y1 and y3. However, since the writing
styles of the two examples of digit 6 shown in Figures 7(e-f)
are slightly different at the ending stroke, y8 is selected as
another discriminative feature in the first digit 6 but not in
the second one. It is also worth mentioning here that in the
16 top ranking outliers found by our algorithm, there are also
several digits coming from the two regular distributions of
1’s and 5’s. Nonetheless, since digits are written by different
people, we found that these outliers, though wrongly labelled
from the ground truth, are still quite anomalous compared
to the popular writing of 1’s and 5’s. In the last Figure 7(g),
we show an example of such cases and as seen, it is rather
hard to say the written number is the digit 1.

D. Other UCI datasets

We further test our algorithm and its competing techniques
on two more benchmark UCI datasets [5]: (i) the image
segmentation and (ii) the English letter recognition. The
image segmentation data set consists of 2,310 instances of
outdoor images being categorized into 7 classes {brickface,
sky, foliage, cement, window, path, grass}. Each instance is a
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Figure 10. Discriminative features (those with labels) from the top five outliers found from the English letter data set (top row) and the image segmentation
data set (bottom row). In each graph, the x-axis is the feature index whereas the y-axis is the feature coefficient.

Table III
ROC AUC RESULTS ON ENGLISH LETTER DATA SET.

algorithm key parameters AUC
ABOD polynomial kernel of degree 2 .800
COP COP k = 3 · D = 48 .822
HiCS + LOF 100 candidates per iteration, LOF k = 10 .604
LOF max score for k = 5 . . . 25 .716
SOD α = 0.8, max score for ` = k = 5 . . . 25 .784
LOGP α = 0.1, min score for k = 5 . . . 25 .831
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Figure 9. ROC curve performance of all algorithms on the outlier detection
over the image segmentation data set.

3×3 region described by 19 attributes. To adapt it into a data
set having natural outliers, we keep all instances from two
randomly selected classes while sampling 2 instances from
each of the 5 remaining classes. This yields 10 outliers and
282 inliers. The English letter recognition data set is much
larger which contains 20,000 instances (unique stimuli) from
26 capital letters in the English alphabet. Each instance was
converted into 16 primitive numerical attributes (statistical
moments and edge counts) which were then scaled to fit
into a range of integer values from 0 to 15. Again, to create
a data set with natural outliers, we keep all instances from
10 randomly selected letters as regular objects and sample
2 instances from each of the 16 remaining letters as hidden
outliers, yielding a data set with 32 outliers and 417 inliers.

Outlier identification: We show in Figures 8 and 9
the ROC curve performance of all algorithms on these
two datasets. The results still indicate that LOGP yields
the best outlier detection quality for these moderately high
dimensional datasets; but both COP and SOD also work

Table IV
ROC AUC RESULTS ON IMAGE SEGMENTATION DATA SET.

algorithm key parameters AUC
ABOD polynomial kernel of degree 2 .887
COP COP k = 3 · D = 57 .957
HiCS + LOF 100 candidates per iteration, LOF k = 10 .891
LOF max score for k = 5 . . . 25 .952
SOD α = 0.8, max score for ` = k = 5 . . . 25 .932
LOGP α = 0.1, min score for k = 5 . . . 25 .968

remarkably well. It remains an open question if the per-
formance can further be improved by constructing a mixed
ensemble of all the methods discussed, as they may likely
find different outliers.

Outlier interpretation: In an attempt to explain for
the discriminative features, we plot in Figure 10 the top
five outliers uncovered by LOGP, selecting from each of
the two datasets. Similar to those of the Pen digit data,
the x- and y-axes show the feature index and coefficient.
As observed from the outliers uncovered from the English
letter data, out of 16 original features, a few have been
selected as the discriminative features. The first two outliers
tend to share the same feature set spanned by {x-box, box
height, x-ege, xegvx, y-ege} whereas the third and fifth ones
have {y-bar, x2ybr, x-ege} as their discriminative features.
These two pairs of instances are the letters H and Y while
the 4th outlier is L, which are mostly different from the
set of letters (B,C,E,I,J,L,O,S,U,X) that have been selected
as the regular objects in the data. It is also interesting to
observe the discriminative features discovered for the five
outliers in the image segmentation data set, shown in the
bottom row of Figure 10. One may see that the space
spanned by {vedgeM, hedgeM, exred, exgreen} would be
appropriate to explain the exceptional property of the first
three outliers whilst the one spanned by {shortlineD, exblue,
exgreen, valueM, hueM} is appropriate to discriminate the
last two outliers. Taking a closer look to the data, these two
types of outliers were indeed exceptional to the two main
distributions, the “brickface” and “cement” classes, which
have been randomly chosen as the common patterns of the
image segmentation data.



V. CONCLUSION

In this paper, we have developed a novel algorithm that
addresses two equally important problems, outlier detection
and outlier interpretation. This contrasts with the majority of
existing algorithms that often provide solutions only for the
problem of outlier detection. Our proposed algorithm takes
a mathematical approach from spectral graph theory to learn
an optimal subspace in which an outlier is well discriminated
from regular objects whereas the intrinsic geometrical struc-
ture of the data is retained to assure the outlier explanation
quality. We showed that the sets of discriminative features
uncovered for hidden outliers are intuitive, meaningful,
and human-interpretable which are important properties to
enhance the understanding of the hidden outliers. Through
experimental analysis on a number of real-world benchmark
datasets, we also demonstrated its appealing performance
in the outlier detection rate, compared against state-of-the-
art algorithms. Along the way, we give further evidence
that application of ensemble techniques for outlier detection
[3,36] is quite sensible and promising.
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