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ABSTRACTThe Web o�ers rich relational data with di�erent seman-tics. In this paper, we address the problem of documentrecommendation in a digital library, where the documents inquestion are networked by citations and are associated withother entities by various relations. Due to the sparsity ofa single graph and noise in graph construction, we proposea new method for combining multiple graphs to measuredocument similarities, where di�erent factorization strate-gies are used based on the nature of di�erent graphs. Inparticular, the new method seeks a single low-dimensionalembedding of documents that captures their relative simi-larities in a latent space. Based on the obtained embedding,a new recommendation framework is developed using semi-supervised learning on graphs. In addition, we address thescalability issue and propose an incremental algorithm. Thenew incremental method signi�cantly improves the e�ciencyby calculating the embedding for new incoming documentsonly. The new batch and incremental methods are evaluatedon two real world datasets prepared from CiteSeer. Exper-iments demonstrate signi�cant quality improvement for ourbatch method and signi�cant e�ciency improvement withtolerable quality loss for our incremental method.
General TermsAlgorithm, Experimentation
KeywordsRecommender Systems, Collaborative Filtering, Semi-supervisedLearning, Social Network Analysis, Spectral Clustering
1. INTRODUCTIONRecommender systems continue to play important andnew roles in business on the World Wide Web [11, 12, 14,
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10, 13]. Per de�nition, the recommender system is an in-formation �ltering technique that seeks to identify a set ofitems that are likely of interest to users.The most popular method adopted by contemporary rec-ommender systems is Collaborative Filtering (CF), wherethe core assumption is that similar users on similar itemsexpress similar interests. The heart of memory-based CFmethods is the measurement of similarity: either the simi-larity of users (a.k.a user-based CF) or the similarity of items(a.k.a items-based CF) or a hybrid of both. The user-basedCF computes the similarity among users, usually based onuser pro�les or past behavior [14, 10], and seeks consistencyin the predictions among similar users. But it is known thatuser-based CF often su�ers from the data sparsity problembecause most of the user-item ratings are missing in prac-tice. The item-based CF, on the other hand, allows inputof additional item-wise information and is also capable ofcapturing the interactions among them [11, 12]. This is amajor advantage of item-based CF when it comes to deal-ing with items that are networked, which are usually en-countered on the Web. For example, consider the problemof document recommendation in a digital library such asthe CiteSeer (http://citeseer.ist.psu.edu). As illustrated inFig. 1, let documents be denoted as vertices on a directedgraph where the edges indicate their citations. The similar-ity among documents can be measured by their cocitations(cociting the same documents or being cocited by others) 1.In this case, document B and C are similar because theyare cocited by E.Working with networked items for CF is of recent interest.Recent work approaches this problem by leveraging the itemsimilarities measured on an item graph [12], modeling itemsimilarities by an undirected graph and, given several ver-tices labeled interesting, perform label propagation to rankthe remaining vertices. The key issue in label propagationon graphs is the measurement of vertex similarity, whererelated work simply borrows the recent results of the Lapla-cian on directed graphs [2] and semi-supervised learning of1In fact, the term cocitation in this paper refers to two con-cepts in information sciences: bibliographic coupling and coc-itation.
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D EFigure 1: An example of citation graph.graphs [18]. Nevertheless, using a single graph Laplacian tomeasure the item similarity can over�t in practice, especiallyfor data on the Web, where the graphs tend to be noisy andsparse in nature. For example, if we revisit Fig. 1 and con-sider two quite common scenarios, as illustrated in Fig. 2,it is easy to see why measuring item similarities based on asingle graph can sometimes cause problems. The �rst case iscalled missing citations, where for some reason a citation ismissing (or equivalently is added) from the citation graph.Then the similarity between A and B (or C) will not be en-coded in the graph Laplacian. The second case, called sameauthors, shows that if A and E are authored by the sameresearcher Z, using the citation graph only will not capturethe similarity between D and B, which presumably shouldbe similar because they are both cited by the author Z.
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Z(b) Same authorsFigure 2: Two common scenarios: missing citationsand same authors, which give rise to the problemsfor measuring item similarities based on a single ci-tation graph.Needless to say, the cases presented above are just twoof the many problems caused by the noise and sparsity ofthe citation graph. Noise in a citation graph is a resultof a missing citation link or an incorrect one. Fortunately,real world data can usually be described by di�erent seman-tics or can be associated with other data. In the focus ofthis paper, where only relational data is concerned, we workwith several graphs regarding the same set of items. Forexample, in the case of document recommendation, and inaddition to the document citation graph, we also have adocument-author bipartite graph that encodes the author-ship, and a document-venue bipartite graph that indicateswhere the documents were published. Such relationship be-tween documents and other objects can be used to improvethe measurement of document similarity. The idea of thiswork is to combine multiple graphs to calculate the similar-ities among items. The items can be the full vertex set ofa graph (as in the citation graph) or can be a subset of agraph (as in document-author bipartite graph) 2. By doingso, we let data from di�erent semantics regarding the same2Note the di�erence between this work and the relatedwork [16] where multiple graphs with the same set of verticesare combined.

item set complement each other.In this paper, we implement a model of learning from mul-tiple graphs by seeking a single low-dimensional embeddingof items that captures the relative similarities among them.Based on the obtained item embedding, we perform labelpropagation, giving rise to a new recommendation frame-work using semi-supervised learning on graphs. In addition,we address the scalability issue and propose an incrementalversion of our new method, where an approximate embed-ding is calculated only for the new items. The new methodsare evaluated on two real world datasets prepared from Cite-Seer. We compare the new batch method with a baselinemodi�ed from a recent semi-supervised learning algorithmon a directed graph and a basic user-based CF method us-ing Singular Value Decomposition (SVD). Also, we comparethe new incremental method with the new batch methodin terms of recommendation quality and e�ciency. We ob-serve signi�cant quality improvement in our batch methodand signi�cant e�ciency improvement with tolerable qualityloss for our incremental method.The contributions of this work are: (1) We overcome thede�ciency of a single graph (e.g. noise, sparsity) by com-bining multiple information sources (or graphs) via a jointfactorization to learn rich yet compact representation of theitems in question; (2) To ensure e�ectiveness and e�ciency,we propose several novel factorization strategies tailored tothe unique characteristics of each graph type, each becom-ing a sub-problem in the joint framework; (3) To handlethe ever-growing volume of documents, we further developan incremental updating algorithm that greatly improvesthe scalability, which is validated on two large real-worlddatasets.The rest of this paper is organized as follows: Section 2introduces how to realize recommendations using label prop-agation; Section 3 describes our method for learning itemembedding from three general types of graphs; Section 4further introduces the incremental version of our algorithm;Experiments are presented in Section 5; Section 6 discussesthe related work; Conclusions are drawn in Section 7.
2. RECOMMENDATION BY LABEL

PROPAGATIONLabel propagation is one typical kind of transductive learn-ing in the semi-supervised learning category where the goalis to estimate the labels of unlabeled data using other par-tially labeled data and their similarities. Label propagationon a network has many di�erent applications. For exam-ple, recent work shows that trust between individuals canbe propagated on social networks [7] and user interests canbe propagated on item graphs for recommendations [12].In this work, we focus on using label propagation for docu-ment recommendation in digital libraries. Let the documentset be D, where |D| is the number of documents. Supposewe are given the document citation graph GD = (VD, ED),which is an unweighted directed graph. Suppose the pair-wise similarities among the documents are described by thematrix S ∈ R
|D|×|D| measured based on GD. A few doc-uments have been labeled �interesting� while the remainingare not, denoted by positive and zero values in the label vec-tor y. The goal is to �nd the score vector f ∈ R

|D| whereeach element corresponds to the propagated interests. Thendocument recommendation can be performed by ranking the



documents by their interest scores. A recent approach ad-dressed the graph label propagation problem by minimizingthe regularization loss below [18]:
Ω(f) ≡ fT (I − S)f + µ‖f − y‖2, (1)where µ > 0 is the regularization parameter. The �rst termis the cost function for the smoothness constraint, whichprefers small di�erences in labels between nearby points; thesecond term is the �tting constraint that measures the di�er-ence of f from given data label y. Setting the ∂Ω(y)/∂f = 0,we can see that the solution f∗ is essentially the solution tothe linear equation:

(I − αS)f∗ = (1− α)y, (2)where α = 1/(1 + µ). One solution to the above is given ina related work using a power method [18]:
f t+1 ← αSf t + (1− α)y (3)where f0 is the random guess and f∗ = f∞ is the solution.Here, notice that L = (I−αS) is essentially a variant Lapla-cian on this graph using S as the adjacency matrix; and

K = (I − αS)−1 = L−1 is the graph di�usion kernel. Thus,one essentially applies f∗ = (1−α)L−1y (or f∗ = (1−α)Ky)to rank documents for recommendation.Now the interesting question is how to calculate S (orequivalently the kernel K) among the set D. However, therehas been limited amount of work on obtaining S. For graphdata, recent work borrows the results from spectral graphtheory [1, 2], where the similarity measures on both undi-rected and directed graphs have been given. For undirectedgraph, Su is simply the normalized adjacency matrix:
Su = Π−1/2WΠ−1/2 (4)where Π is a diagonal matrix such that We = Πe and e is anall-one column vector. For directed graph, where the adja-cency matrix is �rst normalized as a random walk transitionmatrix P (= Π−1W ), the similarity measure Sd is calculatedas:

Sd =
Φ1/2PΦ−1/2 + Φ−1/2P T Φ1/2

2
(5)where Φ is a diagonal matrix where each diagonal containsthe stationary probability on the corresponding vertex 3.Note that the similarity measures given above are derivedfrom a single graph on D. However, many real world datacan be described by multiple graphs, including those within

D and between D and another set. Such information is ofmore importance to combine especially when the a singleview of the data is sparse or even incomplete. In the follow-ing, we introduce a new way to integrate three general typesof graphs. Instead of estimating S directly, we seek to learna low-dimensional latent linear space.
3. LEARNING MULTIPLE GRAPHSThe immediate goal of this section is to determine therelative positions of all documents in a k-dimensional la-tent semantic space, say X ∈ R

|D|×k, which will combinethe social inferences in document citations, authorship and3In practice when some nodes have no outgoing or incom-ing edges, the probability distribution over nodes can in-corporate certain randomness so that P denotes an ergodicMarkov chain.

venues. In the sequel, we assume k is a prescribed parame-ter which we do not seek to determine automatically. Notea contribution of this work is the di�erent strategies usedfor di�erent graphs based on their characteristics, which aredescribed in the following subsections.We begin by a formulation of our problem. Let D, A, Vbe the sets of documents, authors and venues and |D|, |A|,
|V| be their sizes. We have three graphs, one directed graph
GD on D; one bipartite graph GDA between D and A; andone bipartite graph GDV between D and V, which describethe relationship among documents, between documents andauthors, and between documents and venues. Let the ad-jacency matrices of GD, GDA, GDV be D, A and V . Weassume all relationships in question are described by non-negative values. For example, GD can be considered as todescribe the citation relationship among D and Di,j = 1 ifdocument di cites dj (Di,j = 0 if otherwise); GA can be con-sidered as the authorship relationship (an author composesa document) or the citation relationship (an author cites adocument) between D and A.
3.1 Learning from Citation Matrix: DIn this section, we relate the document embedding X tothe citation matrix D, which is the adjacency matrix of thethe directed graph GD.The citation matrix D include two kinds of document co-occurrences: cociting and being cocited. A cociting rela-tionship among a set of documents means that they all citea same document; A cocited relation refer to that severaldocuments are cited together by an another document. Inmany related work (e.g. [18]) on directed graphs, these twokinds of document co-occurrences are used to infer the simi-larity among documents. Probably the most well recognizedway to represent the similarities among the nodes of a graphis associated with the graph Laplacian [2], say L ∈ R

|D|×|D|,which is de�ned as:
L = I − αSd, (6)where Sd is the similarity matrix on directed graphs as mea-sured in Eq. 5; α ∈ (0, 1) is a parameter for the Laplacianto be invertible; I is an identity matrix. Note that Sd issymmetric and positive-semide�nite.Next we give the method to learn from GD.Objective function: Suppose we have a document em-bedding X = [x1, ...xk] where xi contains the distributionof values of all documents on the i-th dimension of a k-dimensional latent space. The overall �lack-of-smoothness�of the distribution of these vectors w.r.t. to the Laplacian

L can be measured as
Ω(X) =

∑

1≤i≤k

x
T
i Lxi = Tr(XTLX), (7)where X = [x1, ...xk]. Here we seek to minimize the overall�lack-of-smoothness� so that the relative positions of docu-ments in X will re�ect the similarity in Sd.Constraint: In addition to the objective function of X,we enforce a constraint on X so as to avoid getting a trivialsolution (Note that X = 0 minimizes Eq. 7 if there is noconstraint on X). We choose to use the newly proposed log-determinant heuristic on XT X, a.k.a the log-det heuristic,denoted by log |XT X| [6]. It has been shown that the log |Y |is a smooth approximation for the rank of Y if Y is a positivesemide�nite matrix. It is obvious the gram matrix XT X is



positive semide�nite. Thus, when we maximize log |XT X|,we e�ectively maximize the rank of X, which is at most
k. Another way to understand log |XT X| is to note that
|XT X| =

∏

i λi(X
T X) =

∏

i σi(X)2, where λi(Y ) is the i-th eigen-value of Y and σi(X) is the i-th singular value of X.Therefore, a full-ranked X is preferred when log |XT X| ismaximized. For more reasons on using the log-det heuristic,refer to the Comments below and [6].Using the log-det heuristic, we arrive at the combinedoptimization problem:
min

X

{Tr(XTLX)− log |XT X|
} (8)where Tr(A) is the trace function de�ned as the sum of diag-onal elements of A. It has been shown that max{log |XT X|}(or equivalently min{− log |XT X|}) is a convex problem [6].So Eq. 8 is still a convex problem.Comments: First, it is interesting to notice that we didnot use the traditional constraint on X (such as the or-thonormal constraint of the subspace used in PCA [15]).The reason of choosing log-det heuristic in our case is be-cause that (1) the orthonormal constraint is non-convexwhile the remaining of the problem is; (2) the orthonor-mal constraint cannot be solved by gradient-based methodsand thus cannot be e�ciently solved and cannot be easilycombined with the other two factorizations in the followingsections; (3) the log-det, log |XT X|, has a small problemscale (k×k) and can be solved e�ectively by gradient-basedmethods. Second, note a key di�erence of this work fromrelated work on link matrix factorization (e.g. [20]) is thatwe seek to determine X to comply with the graph Laplacian(not to factorize the link matrix) which gives us a convexproblem that is global optimal.

3.2 Learning from Author Matrix: AHere, we show how to learn from an author matrix, A,which is the adjacency matrix of the bipartite graph, GDA,that captures the relationship between D and A. We canuse GDA to encode two kinds of information between authorsand documents, one being the authorship and the other be-ing the author-citation-ship. To encode authorship, we let
A ∈ I

|D|×|A| (I ∈ {0, 1}), where Ai,j indicates whether the
i-th paper is authored by the j-th author; To encode author-citation-ship, we assume A ∈ R

|D|×|A|, where Ai,j can be thenumber of times that document i is cited by author j (orthe logarithm of the citation count for rescaling).We consider both kinds of author-document relationshipequivalently using matrix factorization, where authors inboth cases are considered social features of documents, in-ferring similarities between documents. The basic intuitionis that the document related to a same set of authors shouldbe relatively close in the latent space X. The inference ofthis intuition to citation recommendation is that the otherwork of an author will be recommended given a reader isinterested in several work by similar authors.Given the authorship matrix A ∈ R
|D|×|A|, we want touse X to approximate it. Let the authors be described byan author pro�le matrix W ∈ R

|A|×k. We can approximate
A by XW T as:

min
X,W
‖A−XW T ‖2F + λ1‖W‖

2
F , (9)where X and W are the minimizers. To prevent over�t-ting, the second term is used, where λ1 is the parameter.

Note that later we will combine Eq. 8 and Eq. 9; So we donot show the constraint on ‖X‖2F here. It is worth men-tioning that the idea of using two latent semantic spaces toapproximate a co-occurrence matrix is similar to that usedin document content analysis (e.g. the LSA [5]).
3.3 Learning from Venue Matrix: VIn the above, we have given the method for learning arepresentation of D from a directed citation graph GD andan undirected bipartite graph GDA. In this section, we aregiven an additional piece of categorical information, whichcan be described by the bipartite venue graph GDV , whereone set of nodes are the documents from D and the otherset are the venues from V.Similar to A, we have the venue matrix V ∈ I

|D|×|V|,where Vi,j denotes whether document i is in venue j. How-ever, a key di�erence here is that each row in V has at mostone nonzero element because one document can proceed inat most one venue. Although we could as well employ XW Tto approximate V (as in Sec. 3.2), we will show that the spe-cial property of V can help us cancel the variable matrix W ,and thus reducing the optimization problem size for bettere�ciency. Accordingly, we follow a similar but di�erent ap-proach. In particular, let us consider to use V to predictthe X via linear combinations. Suppose we have W2 as thecoe�cient, we seek to minimize the following:
min
X,W2

‖V W T
2 −X‖2F . (10)One can understand Eq. 10 in this way: Here each column of

W2 can be considered as a cluster center of the correspondingclass (i.e., the venues). Then solving Eq. 10 in fact simulta-neously (1) pushes the representation of documents close totheir respective class centers; and (2) optimizes the centersto be close to their members.Next, we cancel W2 using the unique property of our venuematrix V . Setting the derivative to be zero, we have 0 =
∂‖V W T

2 −X‖2F /∂W2 = 2(V T V W2−V T X), suggesting that
W2 = (V T V )−1V T X. Note that V T V is diagonal matrixand is thus invertible. Plug in W2 back to Eq. 10. We arriveat the optimization where W2 is canceled:

min
X
‖V (V T V )−1V T X −X‖2F , (11)where (V T V )−1V T is the pseudo inverse of V . Here since

V T V is |V| × |V| diagonal matrix, its inverse can be com-puted in |V| �ops. Meanwhile, V (V T V )−1V T is block diag-onal where each block denotes a complete graph among alldocuments within the same venue. Note that Eq. 9 cannotbe handled in the same way because (AT A)−1 is a dense ma-trix, resulting in a |D| × |D| dense matrix of A(AT A)−1AT ,which in practice raises scalability issues.
3.4 Learning Document EmbeddingWe have arrived at a combined optimization formulationgiven the above sub-problems. We will combine Eq. 8, Eq. 9and Eq. 10 in a uni�ed optimization framework. De�ne thenew objective J(X, W ) as a function of X, W . We have anoptimization below to learn the document embedding matrix
X:

J(X, W ) = (Tr(XTLX)− log |XT X|

+α‖A−XW T ‖2F + λ‖W‖2F

+β‖V (V T V )−1V T X −X‖2F ) (12)



where λ is the weight of regularization on W ; α is the weightfor learning from A; β is the weight for learning from V .In this paper, we only empirically �nd the best values for
α and β that yield the best F-scores for the current dataset. Future work on how to choose parameter values will behelpful to practitioners.The optimization illustrated above can be solved usingstandard Conjugate Gradient (CG) method, where the keystep is the evaluation of objective function and the gradient.In Appendix .1, we show the gradients for the combinedoptimization.After X is calculated, we can use linear model in the rec-ommendation, i.e. f∗ = X(XT X)−1XT y. We can obtaine�ciency advantage over the power method as in Eq. 3.
4. INCREMENTAL UPDATE OF DOCUMENT

EMBEDDINGAn incremental version of our new method will be pro-posed in this section. The goal of incremental update of Xis to avoid heavy computation of known documents whenthere is a small size of update. The incentive for designingan incremental update algorithm is to delay (or avoid) re-computation in a batch approach. The incremental updateof X we will give is an e�cient approximate solution. Inparticular, suppose we have used document D0, V0, A0 andtheir relationship at time t0 to compute a document embed-ding X0 for the document set D0. Now, at time t1, we haveobserved an additional set of new documents D1. How canwe use the pre-computed X0 to compute an embedding of
D1 in X1 ∈ R

|D1|×k e�ciently? Note that typically |D1| ismuch smaller than |D0|.
4.1 Rewriting Objective FunctionsWe rewrite the objective function in Eq. 12. Let X be theminimizer. We assume that the embedding of old documentsis in X0 and the X1 ∈ R

|D1|×k is the embedding for D1. Here
XT = [XT

0 , XT
1 ]. Let the updated three graphs be encodedin the three new matrices below:

A =





A00 A01

A10 A11



 , V =





V0

V1



 ,L =





L00 L01

LT
01 L11



 ,where the A encodes the new document-author relationship;the V encodes the new the document-venue relationship (as-suming no emergence of new venues); and the L denotes thenew Laplacian calculated on the updated document citationgraph. By convention, the index 0 corresponds to the orig-inal part of the matrix and the index 1 indicates the newpart. For example, V0 is the venue matrix at time t0 and V1is the venue matrix at time t1.Consider the objective function in Eq. 12. After severalrewrites as entailed in Appendix .2, the objective function inEq. 12 on the new set of matrices now becomes the following:
J = Tr(XT

0 L00X0 + 2XT
0 L01X1 + XT

1 L11X1)

− log |XT
0 X0 + XT

1 X1|

+λ‖W0‖
2
F + λ‖W1‖

2
F

+α‖A00 −X0W
T
0 ‖

2
F + α‖A01 −X0W

T
1 ‖

2
F

+α‖A10 −X1W
T
0 ‖

2
F + α‖A11 −X1W

T
1 ‖

2
F

+β‖(V0Σ
−1V T

0 − I)X0 + V0Σ
−1V T

1 X1‖
2
F

+β‖V1Σ
−1V T

0 X0 + (V1Σ
−1V T

1 − I)X1‖
2
F , (13)

where the coe�cients are L, A, V , and Σ = (V T
0 V0+V T

1 V1);The variables are X =





X0

X1



, W =





W0

W1



; The param-eters are α, β, λ.
4.2 Efficient Approximate SolutionWe will make the Eq. 13 more e�cient in this section,hoping to only calculate the incremental part of X for thenew documents in D1.First, let us assume that the incremental update of X onlyseek to update the embedding of D1 but does not change theoriginal embedding of D0, i.e. that X0 is �xed. Similarly,
W0 is �xed for the authors observed before. Second, we cansee that V0 in V is �xed because documents will not changevenues over time. Third, we show that the segment in thenew Laplacian L01 is approximately zero because no old doc-uments can cite new documents which results in relativelysmall stationary probabilities on the new documents (wewill show more details for this proposition in Appendix .3).Given the above assumptions and observations, after dis-carding the constant terms, we have the following optimiza-tion for incremental update of X:

Japp = Tr(XT
1 L11X1)− log |XT

0 X0 + XT
1 X1|

+α‖A01 −X0W
T
1 ‖

2
F + α‖A10 −X1W

T
0 ‖

2
F

+α‖A11 −X1W
T
1 ‖

2
F + λ‖W1‖

2
F

+β‖(V0Σ
−1V T

0 − I)X0 + V0Σ
−1V T

1 X1‖
2
F

+β‖V1Σ
−1V T

0 X0 + (V1Σ
−1V T

1 − I)X1‖
2
F , (14)where Σ = (V T

0 V0 + V T
1 V1). The variables are X1 and W1that has |D1| × k and |A1| × k elements respectively. Since

D1 and A1 are very small, the incremental calculation of X1can be achieved very e�ciently. Again, this problem can besolved using conjugate gradient method where the gradientsof Eq. 14 are presented in Appendix .1.
5. EXPERIMENTSA real-world data set for experimentation was generatedby sampling documents from CiteSeer using combined doc-ument meta-data from CiteSeer and another two sources(the ACM Guide, http://portal.acm.org/guide.cfm, and theDBLP, http://www.informatik.uni-trier.de/ ley/db) for en-hanced data accuracy and coverage. The meta-data wasprocessed so that the ambiguous author names and noisyvenue titles were canonicalized 4. Since the data in CiteSeerare collected automatically by crawling the Web, we maynot have enough information about certain authors. Ac-cordingly, we collected the documents by those top authorsin CiteSeer ranked by their numbers of documents. Then wecollected the venues of these documents. Similarly, we keptthose venues with most documents in the prepared subsetand discarded the venues that include fewer documents. Fol-lowing the same procedure, two datasets were prepared withdi�erent sizes. The �rst dataset, referred to as DS1, has 400authors, 9, 197 documents, 50 venues, and 19, 844 citations;The second dataset, referred to as DS2, which is larger insize, has 800 authors, 15, 073 documents, 100 venues, and
38, 614 citations.4Venues with only temporal di�erences, such as the con-ference proceedings from di�erent years or the journals ofdi�erent issues, were treated as the same venue.



5.1 Evaluation MetricsThe performance of recommendation can be measured bya wide range of metrics, including user experience studiesand click-through monitoring. For experimental purpose,this paper will evaluate the proposed method against ci-tation records by cross-validation. In particular, we ran-domly remove t documents, use the remaining documentsas the seeds, perform recommendations, and judge the rec-ommendation quality by examining how well these removeddocuments can be retrieved. As suggested by real userusage patterns, we are only interested in the top recom-mended documents. Quantitatively, we de�ne the recom-mendation precision (p) as the percentage of the top recom-mended documents that are in fact from the true citationset. The recall (r) is de�ned as the percentage of true cita-tions that are really recommended in the top m documents.The F-score, which combines precision and recall is de�nedas f = (1 + δ2)rp/(r + δ2p), where δ ∈ [0,∞) determineshow relatively important we want the recall to be (Here weuse δ = 1, i.e. F-1 score, as in many related work.) 5. Wehave introduced a parameter in evaluation, m, which is thenumber of top documents we evaluate the f-score at.
5.2 Recommendation QualityThis section introduces the experiments on recommenda-tion quality. We compare the recommendation by our al-gorithm with two other baselines: one based on Laplacianon directed graphs [2] and label propagation using graphLaplacian [18] (named as Lap) and the other based on Sin-gular Vector Decomposition of the author matrix (named asSVD) 6. We chose to compare with the Lap method to seewhether the fusion of di�erent graphs can e�ectively pro-duce additional information than the original graph citationgraph; We chose the SVD on author matrix as another base-line because we would like compare our method against thetraditional CF method on the additional graph information(as one can argue that the signi�cant improvement of thenew method is purely due to the use of the additional infor-mation).Table 1 and Table 2 list the f-scores (de�ned in Sec. 5.1)of three di�erent methods (our new method with Lap andSVD) on two datasets (DS1 and DS2). Table 1 for di�erentnumber of top documents evaluated on (denoted by m). Weare able to see that the new method outperforms both Lapand SV D signi�cantly on both datasets in di�erent settingsof parameters. In general, the new method are 3 − 5 timesbetter in f-score than Lap and 2.5 times better than SV D.The Lap method under-performs SV D on the very top doc-uments but beats it if evaluated on more top documents. Inaddition, we notice that the f-scores get better in general as5Note that even it is the recommendation problem that weaddress, we cannot use the Mean Average Error (MAE),which is used for measuring the quality of a CollaborativeFiltering algorithm, because we do not seek to approximatethe ratings of documents but to preserve their preferenceorders in the recommendation ranking. Similarly, we cannotuse Discounted Cumulated Gain (DCG), which is used forevaluating a rank list, because the numbers of true citationsin each prediction task are di�erent.6If we consider the author matrix as a user-item rating ma-trix, the SVD of the rating is in fact a simple CollaborativeFiltering (CF) method. However, due to di�erent objectivesof our problem and the traditional CF, we will see later thatour method outperforms SVD towards our goal signi�cantly.

f \ m m=t m=5 m=10
DS1

f(lap) 0.013 0.048 0.192f(svd) 0.035 0.086 0.138f(new) 0.108 0.242 0.325
DS2

f(lap) 0.011 0.046 0.156f(svd) 0.027 0.072 0.109f(new) 0.083 0.158 0.229Table 1: The f-score calculated on di�erent numbersof top documents, m.f \ t t=1 t=2 t=3 t=4
DS1

f(lap) 0.041 0.048 0.075 0.086f(svd) 0.062 0.088 0.099 0.103f(new) 0.197 0.242 0.248 0.252
DS2

f(lap) 0.037 0.047 0.068 0.077f(svd) 0.049 0.072 0.082 0.086f(new) 0.121 0.158 0.181 0.182Table 2: The f-score w.r.t. di�erent numbers of left-out documents, t.we look at more top documents. Also, the f-scores on thesmaller dataset DS1 are generally higher than those on thelarger dataset DS2. Here, we can see that the recommen-dation quality can be signi�cantly improved by using theauthor matrix as the additional information. Note that thedi�erent information, when used individually, such as the
Lap on the citation graph or the SV D on the author graph,can be not as good. However, if the multiple informationare combined, the performance is greatly improved7.
5.3 Parameter EffectThe e�ect of parameters for the new method is experi-mented in this section. We experiment with di�erent set-tings of dimensionality, or k, and weights on authors andvenues, or α and β. In Table 3, we show the f-scores fordi�erent k's. It occurs that the f-scores become higher forgreater k. We believe this is because the higher dimensionalspace can better captures the similarities in the original ci-tation graphs. However, on the other hand, we observe thatit takes longer training time for greater k. Seeking k thusbecome a trade-o� between quality and e�ciency. In ourexperiments, we chose k = 100 as greater k do not seemto give much better results. The CPU time for training atdi�erent k's are illustrated in Table 4.Fig. 3 illustrates the f-scores for di�erent settings of α and
β, which are respectively the weights on authors and venues.We determine which of the two components obtains greaterimprovement if incorporated, search for the best parameterfor this component, �x it, and then search for the best pa-rameter for the other component. In our experiments, we7In our experiments, additionally, we work with di�erentmethods of formulating the author matrix, A, for example,using the number of citations from authors to documents in
A. The experiments show that using the citation-ship in Acan be even better. Due to space limit, here we present theexperiments with authorship in A only.



f \ k k=50 k=100 k=150 k=200
DS1 0.203 0.242 0.249 0.262
DS2 0.095 0.158 0.181 0.197Table 3: The f-score w.r.t. di�erent setting of di-mensionality, k.t(lap) t(new)time \ k k=50 k=100 k=150 k=200

DS1 694s 440s 502s 558s 621s
DS2 940s 638s 743s 820s 910sTable 4: The CPU time for recommendations w.r.t.di�erent dimensionality, k.observe that adding the author component tends to improvethe recommendation quality better so we �rst tune α, whichyields di�erent f-scores, as shown by the blue curve in Fig. 3.Then we �x the α = 0.1 and tune β, arriving at the bestf-score at β = 0.05.
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Figure 3: f-scores for di�erent settings of weights onthe authors, α, and on the venues, β. The α is tuned�rst for β = 0; Then β is tuned for the �xed best
α = 0.1.
5.4 Incremental UpdateHere we present the experiments for another contributionof this work: incremental update. The incremental updatemethod we propose seeks to determine an approximate em-bedding of documents by working with the incremental dataand the relationship between the new data and the old. Weevaluate this new method in its training time, recommenda-tion quality, and propagation of errors.Fig. 4 illustrates the comparison of training time for theincremental method and batch update by percentage onboth datasets. We try to use a fair baseline. In particular,we compare with a percentage of batch update time, wherethe percentage re�ects the relative amount of incrementaldata. As illustrated in Fig. 4, the incremental method takes

on average 1/2− 1/5 of the training time of batch method.The improvement is more signi�cant on larger dataset (DS2)than small ones (DS1).
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Figure 4: Training time for incremental update andbatch method w.r.t. di�erent percentage of incre-mental data on DS1 and DS2. The training timefor batch method is the corresponding percentageof the overall training time.The next natural question to ask is how much quality hasto be compromised for the improvement of e�ciency. Fig. 5present the comparison of f-scores for di�erent percentageof incremental using the incremental method with the batchmethod applied to the full data. It turns out that the perfor-mance of incremental method deteriorates as the incremen-tal data takes a large percentage. Fortunately, the f-scoresdecrease at a slower ratio for the larger dataset (DS2). Thisis because that more information is captured by the largerdataset with larger absolute size. On average, the deterio-ration of recommendation quality can be signi�cant if theincremental data takes more than 30% of the data. So wewould suggest re-run the batch process when the updatedcorpus exceeds the original size signi�cantly.Finally, we present the propagation of errors if the incre-mental update is applied to multiple times. It has come toour attention that the performance deteriorates at a fasterpace if one applies multiple steps of incremental updates.Fig. 5.4 illustrates the f-scores w.r.t. di�erent numbers ofsteps in the incremental updates, for di�erent overall per-centage to update. Notice that the f-scores deteriorate fasterif the overall percentage of update is greater. Also, the f-scores decrease slower at �rst 1 − 2 steps and faster fromthe 3rd step onwards. It is then suggested that the newincremental method should be used with caution, preferringfewer number of uses or on a larger percentage of data foreach use. It seems that the error in the incremental updatesis propagated more than linearly.The incremental update methods presented in this sec-tion addresses the scalability issues in recommendation oflarge-scale dataset on the Web. In practice, we recommenda combination of batch update and incremental update seek-ing a tradeo� between e�ciency and scalability.
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Figure 5: f-scores for di�erent percentage of incre-mental data in the incremental update, on DS1 and
DS2, w.r.t. the batch method applied to the fulldata.
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Figure 6: f-scores for di�erent numbers of steps inthe incremental updates, for di�erent overall per-centage (p) to update, on DS1 and DS2.
6. RELATED WORKThis work is �rst related to a family of work on cate-gorization of networked documents. Categorization of net-worked documents is developed based on the link struc-ture and the co-citation patterns (e.g. [8] for Web docu-ment clustering). In [8], all links are treated as undirectededge of the link graph and the content information is onlyused for weighing the links by the textual similarity be-tween documents on both ends of the link. Very recently,Chung[2] has proposed a regularization framework on di-rected graphs. Soon after, Zhou et.al. [18] used this regu-larization framework on directed graphs for semi-supervisedlearning, which also seek to explain ranking and categoriza-tion in the same semi-supervised learning framework. Later,a work by Zhou et.al. extended the regularization to multi-ple graphs with the same set of vertices [16], which, however,

is di�erent from this work where the item set can be eithera full set or a subset of the graphs in question.This work also relates to the category of work that ap-proach document analysis via embedding documents onto arelatively low dimensional latent space [5, 17]. Latent Se-mantic Indexing (LSI) [5] is a representative work in thiscategory that uses a latent semantic space to implicitly cap-ture the information of documents. Analysis tasks, such asclassi�cation, could be performed on the latent space. An-other commonly used method, Singular Value Decomposi-tion (SVD), ensures that the data points in the latent spacecan optimally reconstruct the original documents. Based onsimilar idea, Hofmann [9] proposed a probabilistic model,called Probabilistic Latent Semantic Indexing (pLSI). Thiswork is similar but di�erent to pLSI in that we not only ap-proximate one single document matrix but several matricesat the same time.Finally, this work shares the idea of related work on com-bining multiple sources of information. In this category,prior work by Cohn and Hofmann [4] extends the latentspace model to construct the latent space from both con-tent and link information, using content analysis based onpLSI and PHITS [3], which is a direct extension of pLSIon the links. In PLSI+PHITS, the link is constructed withthe linkage from the topic of the source web page to thedestination web page. In that model, the outgoing links ofthe destination web page have no e�ect on the source webpage. In other words, the overall link structure is not uti-lized in PHITS. Communitiy discovery has also been donepurely based on document content [19]. Recent work. [20]utilizes the overall link structure by representing links usingthe latent information of their both end nodes. In this way,the latent space truly uni�es the content and the underlyinglink structure. Our work is similar to that of [20] but wenot only considers links but also co-link patterns by usingthe Laplacian on directed graphs.
7. CONCLUSIONS AND FUTURE WORKWe address the item-based collaborative �ltering problemfor items that are networked. We propose a new method forcombining multiple graphs in order to measure item simi-larities. In particular, the new method seeks a single low-dimensional embedding of items that captures the relativesimilarities among them in the latent space. We formu-late this as an optimization problem, where the learning ofthree general types of graphs are formulated as three sub-problems, each using a factorization strategy tailored to theunique characteristics of the graph type. Based on the ob-tained item embedding, a new recommendation frameworkis developed using semi-supervised learning on graphs. Inaddition, we address the scalability and propose an incre-mental version of the new method. Approximate embed-dings are calculated only for new items making it very ef-�cient. The new batch and incremental methods are eval-uated on two real world datasets prepared from CiteSeer.Experiments have demonstrated signi�cant quality improve-ment for our batch method and signi�cant e�ciency im-provement with tolerable quality loss for our incrementalmethod. For future work, we will pursue other applicationsof the new graph fusion technique, such as clustering or clas-si�cation. In addition, we want to extend our framework tographs with hyperedges.
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APPENDIX
.1 The Gradients for Eq. 12 and Eq. 14The gradients for Eq. 12 are:

∂J

∂X
= 2LX − 2X(XT X)−1

+2α(XW T W − AW ) +

+2β(V V † − I)T (V V † − I)X (15)
∂J

∂W
= 2α(WXT X − AT X) + 2λW (16)where V † = (V T V )−1V T is the pseudo inverse of V . Whensearching for the solutions, we vectorize the gradients of

X, W into a long vector. In implementation, di�erent cal-culation order of matrix product leads to very di�erent ef-�ciency. For example, it is much more e�cient to calculate
(V V † − I)T (V V † − I)X as (V †)T V T V V †X − 2V V †X + Xbecause V and V † are very sparse.The gradients for Eq. 14 are:
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1 V1).The gradients of Eq. 14 w.r.t. W1 are
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.2 Rewriting the Objective FunctionsFirst, for the terms in Eq. 12 for learning from A, we in-troduce another set of variables in W1 ∈ R

|A1|×k, to describethe new authors in A1. Then we have W T = [W T
0 , W T

1 ]. Letthe document-author relationship be encoded in the authormatrix A: A =
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. Then we have the following:
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F . (20)Second, for the term in Eq. 12 regarding learning fromvenue matrix, V , we assume that there are no new venues

showing up between t0 and t1. So the new V takes the formas V =
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 where V0 is the venue matrix at time t0.Let the component V (V T V )−1V T = Φ. We can see thatthe learning objective becomes
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1 V1) is a diagonal matrix whose in-verse is very easy to compute. Then we plug Eq. 22 intoEq. 21. After several simple manipulations, we arrive at thefollowing learning objective for venues:
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1 X1| (25)where L00 is a |D0| × |D0| matrix for the graph on D0; L01is a |D0| × |D1| matrix for interaction between D0 and D1;and L11 is a |D1| × |D1| matrix for the graph on D1.
.3 The LaplacianL is almost block diagonal:Here we will show that the Laplacian L on the new matrix
D at time t1 is near block diagonal. Recall that the citationmatrix D at time t1 can be written as D =
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.Here, D00 is the same as the citation matrix used to computethe Laplacian at time t0. Remember that L = I − αS,where S is the similarity measured on the directed graph Din Eq. 5:
S =
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(S̄ + S̄T ) (26)where S̄ = Φ1/2PΦ−1/2 and P is the stochastic matrix nor-malized from D and Φ is a diagonal matrix containing thestationary probabilities on each random walk state. We



rewrite S̄ as follows:
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2(27)where P00, P01, P10, P11 are normalized from D00, D01, D10, D11and the diagonal matrix Φ00 (Φ11) contains the stationaryprobabilities on the old (new) documents.We further know that P01 = 0 because new documents D1cannot be cited by the old documents. So we have:
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 . (28)And we also know that the new documents D1, with fewcitations among themselves, mainly cite the old documentsin D0. Thus, in the case when D0 is much larger than D1, thestationary probabilities on the new documents D1 are verysmall, i.e. Φ11 ∼ 0. This gives us Φ
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which is almost block diagonal, i.e. L01 ∼ 0. However, notethat L11 is not necessarily zero because Φ
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11 . Also, note that we do not claim that
L00 in the new L is identical to the original Laplacian on
D0. Nevertheless, we discard the term XT

0 L00X0 in Eq. 13because X0 is assumed to be unchanged.
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