
Fast Nonparametric Matrix Factorization
for Large-scale Collaborative Filtering

Kai Yu† Shenghuo Zhu† John Lafferty‡ Yihong Gong†

NEC Laboratories America, Cupertino, CA 95014, USA †

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA ‡

ABSTRACT
With the sheer growth of online user data, it becomes chal-
lenging to develop preference learning algorithms that are
sufficiently flexible in modeling but also affordable in com-
putation. In this paper we develop nonparametric matrix
factorization methods by allowing the latent factors of two
low-rank matrix factorization methods, the singular value
decomposition (SVD) and probabilistic principal component
analysis (pPCA), to be data-driven, with the dimensionality
increasing with data size. We show that the formulations of
the two nonparametric models are very similar, and their
optimizations share similar procedures. Compared to tradi-
tional parametric low-rank methods, nonparametric models
are appealing for their flexibility in modeling complex data
dependencies. However, this modeling advantage comes at
a computational price — it is highly challenging to scale
them to large-scale problems, hampering their application
to applications such as collaborative filtering. In this pa-
per we introduce novel optimization algorithms, which are
simple to implement, which allow learning both nonpara-
metric matrix factorization models to be highly efficient on
large-scale problems. Our experiments on EachMovie and
Netflix, the two largest public benchmarks to date, demon-
strate that the nonparametric models make more accurate
predictions of user ratings, and are computationally com-
parable or sometimes even faster in training, in comparison
with previous state-of-the-art parametric matrix factoriza-
tion models.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Theory, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09,July 19-23 2009, Boston.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Keywords
Nonparametric Models, Matrix Factorization, Collaborative
Filtering

1. INTRODUCTION
Recent advances in collaborative filtering have been par-

alleled by the increasing popularity of low-rank matrix fac-
torization methods. To discover the rich structure of a very
large, sparse rating matrix, empirical studies show that the
number of factors should be quite large [10]. Inspired by
the success of kernel methods [11], which generalize finite-
dimensional linear models to infinite-dimensional functions
in a RKHS, it is natural to ask — why do we restrict the
number of factors in advance? Kernel methods enable the
use of infinite dimensional feature spaces; however, using
kernel methods for low-rank factorization problems is ham-
pered by the large scale of real-world data. To the best
of our knowledge, it has only been attempted on relatvely
small problems [12].

Nonparametric models differ from parametric models in
the sense that the model dimensionality is not specified a
priori, but is instead determined from data. The term “non-
parametric” is not meant to imply that such models com-
pletely lack parameters but that the number and nature of
the parameters are flexible and not fixed in advance. Recent
years has witnessed the successful development of such non-
parametric methods as kernelized support vector machines
(SVMs) [11], Gaussian processes (GPs) [7], and Dirichlet
processes (DP) in modeling complex data dependencies. On
the other hand, applying these models to large-scale data is
always challenging. To date, optimization for large scale
nonparametric models like kernel systems remains an active
research area. Since collaborative filtering problems usually
involve an even greater scale of observational data than clas-
sification/regression problems, fast nonparametric methods
for collaborative filtering is a relatively untouched area.

In this paper we investigate nonparametric matrix fac-
torization models, and study together two particular exam-
ples, the singular value decomposition (SVD) and proba-
bilistic principal component analysis (pPCA) [14, 9]. Their
nonparametric counterparts in fact both have simple and
similar formulations, which we call by nonparametric SVD
(NSVD) and nonparametric pPCA (NPCA), respectively.
By effectively exploiting data sparsity and organizing the
computation, we show that learning with such models is in
fact efficient on large-scale sparse matrices. Interestingly,
although learning probabilistic models is usually considered
to be slow, our methods make NPCA as fast as its non-

probabilistic counterpart NSVD.
We applied the two proposed algorithms to the EachMovie

data matrix of size 74, 424× 1, 648 (users×movies) and the
Netflix data matrix of size 480, 189×17, 770, the two largest
public benchmarks to date. Our results are, in term of both
efficiency and accuracy, comparable or superior to the state-
of-the-art performance achieved by low-rank matrix factor-
ization methods.

2. LOW-RANK MATRIX FACTORIZATION

2.1 Notation
We use uppercase letters to denote matrices and lower-

case letters to denote vectors, which are by default column
vectors. For example, Y ∈ RM×N is an matrix, its (i, j)-th
element is Yi,j , and its i-th row is represented by an N × 1
vector yi. The transpose, trace, and determinant of Y are
denoted by Y >, tr(Y), and det(Y), respectively, and I de-
notes the identity matrix with an appropriate dimensional-
ity. Moreover, ‖y‖ is the vector `2-norm, ‖Y ‖F denotes the
Frobenius norm, and ‖Y ‖∗ the trace norm, which is given
by the sum of the singular values of Y .

We denote a multi-variate Gaussian distribution of a vec-
tor y with mean µ and covariance matrix Σ by N (y; µ, Σ),
or by y ∼ N (µ, Σ); E(·) denotes the expectation of ran-
dom variables such that E(y) = µ and E[(y− µ)(y− µ)>] =
Cov(y) = Σ.

If Y contains missing values, O denotes the indices of ob-
served elements of Y , and |O| the number of observed ele-
ments. (i, j) ∈ O if Yi,j is observed, (Y)2O =

P
(i,j)∈O Y 2

i,j is

the sum of the square of all observed of Y . We use Oi to
denote the indices of non-missing elements of the i-th row
yi. For example, if yi’s elements are all missing except the
1st and the 3rd elements, then:

• Oi = [1, 3]> and yOi = [Yi,1, Yi,3]
>;

• If K is a square matrix, K:,Oi denotes a sub matrix
formed by the 1st column and 3rd column of K;

• KOi is a sub square matrix of K:,Oi , further obtained
by keeping its 1st & 3rd rows.

2.2 Collaborative Filtering by Matrix Factor-
ization

In this paper we consider an M × N rating matrix Y
describing M users’ numerical ratings on N items. A low-
rank matrix factorization approach seeks to approximate Y
by a multiplication of low-rank factors, namely

Y ≈ UV > (1)

where U is an M × L matrix and V an N × L matrix, with
L < min(M, N). Throughout this paper we make the as-
sumption M > N , without loss of generality. Since each
user rates only a small portion of the items, Y is usually ex-
tremely sparse. Collaborative filtering can be seen as a ma-
trix completion problem, where the low-rank factors learned
from observed elements are used to fill in unobserved ele-
ments of the same matrix.

2.2.1 Singular Value Decomposition
Traditionally, the SVD is derived in terms of approximat-

ing a fully observed matrix Y by minimizing ‖Y − UV >‖F.

However when Y contains a large number of missing values,
a modified SVD seeks to approximate those known elements
of Y according to

min
U∈RM×L,V ∈RN×L

(Y − UV >)2O + γ1‖U‖2F + γ2‖V ‖2F (2)

where γ1, γ2 > 0, and the two regularization terms ‖U‖2F
and ‖V ‖2F are added to avoid overfitting. Unfortunately,
the optimization problem is non-convex. Gradient based
approaches can be applied to find a local minimum. This
algorithm is perhaps one of the most popular methods ap-
plied to collaborative filtering, e.g., [4, 5, 13].

2.2.2 Probabilistic Principle Component Analysis
Probabilistic PCA [14, 9] assumes that each element of Y

is a noisy outcome of a linear transformation

Yi,j = u>i vj + ei,j , (i, j) ∈ O (3)

where U = [ui] ∈ RM×L are the latent variables follow-
ing a prior distribution ui ∼ N (0, I), i = 1, . . . , M , and
ei,j ∼ N (0, λ) is independent Gaussian noise. The learning
can be done by maximizing the marginalized likelihood of
observations using an Expectation-Maximization (EM) al-
gorithm, which iteratively computes the sufficient statistics
of p(ui|V, λ), i = 1, . . . , M in the E-step, and then updates
V and λ in the M-step. Note that the original formula-
tion includes a mean of yi; here we assume that data are
centered for simplicity. Related probabilistic matrix factor-
izations have been applied in collaborative filtering, e.g., [6,
10].

3. NONPARAMETRIC MATRIX FACTOR-
IZATION

3.1 Nonparametric SVD
One way to construct a nonparametric matrix factoriza-

tion model is to relax the cardinality constraint such that
the approximating matrix UV > is full-rank; the following
simple result then holds.

Proposition 1. If U and V are both full-rank, the prob-
lem (2) is equivalent to

min
X,K�0

(Y −X)2O + γ1tr(XK−1X>) + γ2tr(K) (4)

Proof: In solving the problem (2), if we fix V but minimize
the cost w.r.t. U , the sub optimization problem becomes
standard ridge regression

min
U∈RM×L

(Y − UV >)2O + γ1‖U‖2F. (5)

By the representer theorem, we know the solution must sat-
isfy U = AV , A ∈ RM×N . Plugging this first-order condi-
tion into the cost (2) and letting X = UV > and K = V V >,
because K � 0, we obtain (4).1

1In a similar way, we can derive the equivalence to
minX,Σ�0 (Y − X)2O + γ2tr(X

>Σ−1X) + γ1tr(Σ) as well.
Though we get two equivalent formulations, in the remain-
der of this paper we will mostly focus on problem (4), be-
cause the kernel matrix K is smaller than Σ (i.e., M > N).
An earlier version of this result has appeared in [17].

By setting the partial derivatives of the cost (4) w.r.t. K
to be zero, we obtain the optimum condition

K =
p

γ1/γ2(XX>)
1
2 .

Plugging the above condition back into (4), we obtain the
equivalence to a convex learning problem known as max-
margin matrix factorization [12]

min
X∈RM×N

(Y −X)2O + 2
√

γ1γ2‖X‖∗ (6)

using the trace norm. Because of the convexity, the global
optimum can be reached by any algorithm that seeks a local
optimum.

The optimization of (6) resorts to semidefinite program-
ming that can handle only small matrices [12]. Our result
will show that, in contrast, (4) can be applied to much
larger-scale collaborative filtering problems. Since (6) im-
plies a parameter redundancy in γ1 and γ2, in the following
we let γ = γ1 = γ2. We first suggest an EM-like coordi-
nate descent algorithm by alternatively updating X and K;
conveniently, both updates have analytical solutions:2

• E-step, update X: Given the current K, update each
row of X independently by solving a standard ker-
nel regression problem minxi [(yi − xi)

2
O + γx>i K−1xi],

which leads to

xi ← K:,Oi(KOi + γI)−1yOi , i = 1, . . . , M, (7)

where K:,Oi ∈ RN×|Oi| and KOi ∈ R|Oi|×|Oi|. Note
that |Oi| is usually a small number since each user
does not rate many items.

• M-step, update K: Given the current X, update K
according to

K ←
√

X>X = Q
√

SQ> (8)

where Q and S are the results of the standard eigen-
value decomposition X>X = QSQ>, and

√
S is a di-

agonal matrix formed by the square roots of the eigen-
values.

Implementation of the algorithm requires only basic matrix
computations. The kernel regression step (7) suggests, how-
ever, the possibility that when working with “infinite di-
mensions,” the so-called “kernel trick” [11] can be applied
to exploit the data sparsity. In fact, there is an even greater
opportunity to improve efficiency, as we shall discuss in Sec-
tion 4.

3.2 Nonparametric pPCA
For the pPCA model (3) in the limit of “infinite factor

dimensions,” it is infeasible to directly handle either ui or
vj , but we can work on xi = [Xi,1, . . . , Xi,N]>, where Xi,j =
u>i vj . It is easy to see that xi follows an N -dimensional
Gaussian distribution with mean

E(xi) = V E(ui) = 0,

and covariance

E(xix
>
i) = V E(uiu

>
i)V > = V V >.

2Note that the two optimization steps here are different from
the standard EM algorithm for learning probabilistic mod-
els. In this paper we call them by E-step and M-step, mainly
for reference conveniences and showing the analogy with an-
other EM algorithm that is introduced later.

Let K = V V >, and relax the rank constraint such that K
is a positive-definite kernel matrix. Then the pPCA model
(3) is generalized to a simple generative model

yi = xi + ei, i = 1, . . . , M (9)

where ei = [ei,1, . . . , ei,N] and

xi ∼ N (0, K),

ei ∼ N (0, λI).

The model describes a latent process X, and an observa-
tional process Y , whose marginal probability p(Y |K, λ) is

Z
p(Y, X|K, λ)dX =

MY
i=1

N (yOi ; 0, KOi + λI). (10)

As we can see, pPCA in fact assumes that each row of Y
is an i.i.d. sample drawn from a Gaussian distribution with
covariance K + λI. If we consider maximizing the joint
likelihood p(Y, X|K, λ) with respect to X and K, we obtain
an optimization problem

min
X,K�0

(Y −X)2O + λtr(XK−1X>) + Mλ log det(K) (11)

which appears to be similar to the SVD formulation prob-
lem (4). The major difference is that (11) employs the log-
determinant as a low-complexity penalty, instead of using
the trace norm.

However (11) is not a probabilistic way to deal with un-
certainties and missing data. A more principled approach
requires integrating out all of the missing elements, and
aims to maximize the marginalized likelihood (10) condi-
tioned on the observed elements. This is done by a canonical
expectation-maximization (EM) algorithm:

• E-step: Compute the sufficient statistics of the poste-
rior distribution p(xi|yOi , K, λ), i = 1, . . . , M ,

E(xi) = K:,Oi(KOi + λI)−1yOi (12)

Cov(xi) = K −K:,Oi(KOi + λI)−1KOi,: (13)

• M-step: Based on the results of the last E-step, update
the parameters

K ← 1

M

MX
i=1

h
Cov(xi) + E(xi)E(xi)

>
i

(14)

λ← 1

|O|
X

(i,j)∈O

n
Ci,j + [Yi,j − E(Xi,j)]

2
o

(15)

where Ci,j is the j-th diagonal element of Cov(xi),
i.e., the posterior variance of Xi,j .

The EM algorithm appears to be similar to the coordinate
descent in Section 3.1, because both involve a kernel regres-
sion step, (7) and (12). Due to the additional computation
of the posterior covariance of xi by (13), the E-step is ac-
tually identical to Gaussian process regression [7]. The it-
erative optimization is non-convex, and converges to a local
optimum.

4. LARGE-SCALE IMPLEMENTATION
For notational convenience, we refer to the two algorithms

NSVD (nonparametric SVD) and NPCA (nonparametric

pPCA), and describe their large-scale implementations in
this section. The two EM algorithms share a few common
computational aspects: (1) Instead of estimating the latent
factors U and V , they work on an approximating matrix X;
(2) the major computational burden is the E-step, which has
to go over all the M users; (3) in both cases, the E-step is de-
composed into independent updates of xi, i = 1, . . . , M ; (4)
for each update of xi, the kernel trick is applied to exploit
the sparsity of Y . Though the last two properties ease the
computation, a naive implementation is still too expensive
on large-scale data. For example, on the Netflix problem, a
single E-step will consume over 40 hours using NSVD3. Even
worse, since NPCA takes into account the distribution of X
and computes its second order statistics by (13), it costs an
additional 4,000 hours in a single E-step. In the following,
we show that the computational cost of (7) or (12) can be
significantly reduced, and the overhead caused by (13) can
be almost completely avoided. As a result, NSVD is as fast
as low-rank matrix factorization methods, while NPCA is
as fast as its non-probabilistic counterpart – NSVD.

4.1 Fast NSVD
We first reduce the computational cost of (7), which is the

bottleneck of NSVD. The computation can be re-written as

xi = Kzi,

where K is the N × N full kernel matrix, and zi ∈ RN is
a vector of zeros, excepts those elements at positions Oi,
whose values are assigned by

zOi = (KOi + γI)−1yOi .

The re-formulation of (7) suggests that (8) can be realized
without explicitly computing X, since

X>X = K

MX

i=1

ziz
>
i

!
K ⇒

K ←

vuutK

MX

i=1

ziz>i

!
K. (16)

The above analysis suggests that, for every row i, we can
save the multiplication of an N × |Oi| matrix K:,Oi with a
vector zOi of length |Oi|, and the N2 multiplication xix

>
i

(i.e., replaced by the smaller |Oi|2 multiplication zOiz
>
Oi

).

In total we get a reduction of N
PM

i=1 |Oi|2 + N2M mul-
tiplication operations. On the Netflix data, this means a
reduction of over 40 hours for one E-step, and the resulting
computation takes less than 4 hours.

The next major computation is the eigenvalue decompo-
sition required by (8). Since the trace norm regularizer is
a rank minimization heuristic, after some steps if K is rank
R, based on (16) we know that the next K has a rank no
more than R. Thus at each iteration we check the rank R
of K and at the next iteration compute only the leading R
eigenvalues of K.

The pseudo code is described by Algorithm 1. We omit
some fine details to keep the description compact, including
that (1) we check if the predictions deteriorate on a small
set of validation elements and quit the program if that hap-
pens; (2) we keep Q and S to compute the step (11) via

3Throughout this paper, computation time is estimated on
a PC with a 2.66 GHz CPU and 3.0G memory.

KBK = QS(QBQ)SQ>, and store the resulting matrix in
the memory used for K. So the largest memory consump-
tion happens during the inner loop, where we need to store
two N ×N matrices B and K, with totally N(N − 1) mem-
ory cost. The major computation is also the inner loop,
which is O(

PM
i=1 |Oi|3) where |Oi| � N . After obtain-

ing K, the prediction on a missing element at (i, j) is by
Xi,j = Kj,Oi(KOi + λI)−1yOi .

Algorithm 1 NSVD

Require: Y , γ > 0, itermax;
1: allocate K ∈ RN×N , B ∈ RN×N ;
2: initialize iter = 0, K = I, R = N ;
3: repeat
4: iter ← iter + 1;
5: reset B, i;
6: repeat
7: i← i + 1;
8: t = (KOi + γI)−1yOi ;

9: BOi ← BOi + tt>;
10: until i = M ;
11: [Q, S] = EigenDecomposition(KBK, rank = R);
12: S ← Sqrt(S);

13: R← min K, subject to
PK

m=1 Sm ≥
PR

m=1 Sm;
14: S ← Truncate(S, R);
15: K ← QSQ>;
16: until iter = itermax

17: return K;

4.2 Fast NPCA
Compared to the non-probabilistic NSVD, the E-step of

NPCA has one additional step (13) to compute an N × N
posterior covariance matrix for every i = 1 . . . , M . It turns
out the overhead is almost avoidable. Let B be an N × N
matrix whose elements are initialized as zeros, then we use
it to collect the local information by

BOi ← BOi −Gi + zOiz
>
Oi

, for i = 1, . . . , M (17)

where Gi = (KOi + λI)−1 and zOi = Gi · yOi . Given above,
the M-step (14) can be realized by

K ← K +
1

M
KBK. (18)

Therefore there is no need to explicitly perform (13) to com-
pute an N×N posterior covariance matrix for every i, which
saves N

PM
i=1 |Oi|2 + N2PM

i=1 |Oi| multiplications. On the
Netflix problem, this reduces over 4, 000 hours for one E-
step. The pseudo code is given in Algorithm 2. We note
that, since the optimization is non-convex, we initialize K
by an item-item correlation matrix based on the incomplete
Y (see Section 6.3).

Comparing Algorithm 2 with Algorithm 1, we find the re-
maining computation overhead of the probabilistic approach
lies in the steps 10 and 11 that collect local uncertainty infor-
mation for preparing to update the noise variance λ, which
costs additional

PM
i=1(2|Oi|2 + 2|Oi|3) multiplications for

each E-step. In order to further speed-up the algorithm,
we propose to simplify NPCA. The essential modeling as-
sumption of (9) is that Y is a collection of rows yi inde-
pendently and identically following a Gaussian distribution
N (0, K + λI). Then our idea is, rather than modeling the
noise and signal separately, we merge them by K ← K +λI

Algorithm 2 NPCA

Require: Y , itermax;
1: allocate K ∈ RN×N , B ∈ RN×N ;
2: initialize iter = 0, K;
3: repeat
4: iter ← iter + 1;
5: reset B, Er = 0, i = 0;
6: repeat
7: i← i + 1;
8: G = (KOi + λI)−1;
9: t = G · yOi ;

10: Er ← Er +
P

j∈Oi
(Yi,j −Kj,Oit)

2;

11: Er ← Er +
P

j∈Oi
(Kj,j −Kj,OiGKOi,j);

12: BOi ← BOi −G + tt>;
13: until i = M ;
14: K ← K + 1

M
KBK;

15: λ← 1
|O|Er;

16: until iter = itermax

17: return K, λ;

and directly deal with the covariance of the noisy observa-
tions yi, i = 1, . . . , M . The obtained model is conceptually
simple

Yi,j ∼ δ(Xi,j), where xi ∼ N (0, K), (19)

and δ(Xi,j) is the distribution with a probability one if
Yi,j = Xi,j and zero otherwise.

In fact, the simplified model (19) is equivalent to the orig-
inal model (9) that separately handles signals and Gaussian
noises. This is because that in (9) there is no prior ei-
ther on the covariance K or on the noise variance λ, and
thus both models can be seen as an maximum-likelihood
estimator (MLE) of the free-form covariance of the noisy
observations. Though it should be straightforward to as-
sign priors or regularization on K and λ, we present only
the non-regularized approach here for keeping the simplic-
ity. Due to the fact that M is typically very large, the MLE
estimator works well in our experiments. For model (9) the
EM algorithm is the following:

• E-step:

E(xi) = K:,Oi(KOi)
−1(yOi − µOi)

Cov(xi) = K −K:,Oi(KOi)
−1KOi,:

• M-step:

K ← 1

M

MX
i=1

h
Cov(xi) + E(xi)E(xi)

>
i

µ← µ +
1

M

MX
i=1

E(xi)

The implementation is summarized by Algorithm 3. The
computation at the E-step has only minor differences from
that of the non-probabilistic Algorithm 1. Compared with
Algorithm 2, in one E-step, the new version saves about 11.7
hours on the Netflix data, and ends up with only 4 hours.
The memory cost is also the same as Algorithm 1, which
is N(N − 1) for storing K and B. The prediction is made
by computing the expectation E(Yi,j) = Kj,Oi(KOi)

−1(yOi−
µOi)+µj . Due to its remarkable simplicity, we mainly apply
the faster version of NPCA in the experiments.

Algorithm 3 Fast NPCA

Require: Y , itermax;
1: allocate K ∈ RN×N , B ∈ RN×N , b ∈ RN , µ ∈ RN ;
2: initialize iter = 0, K;
3: repeat
4: iter ← iter + 1;
5: reset B, b, i = 0;
6: repeat
7: i← i + 1;
8: G = K−1

Oi
;

9: t = G(yOi − µOi);
10: bOi ← bOi + t;

11: BOi ← BOi −G + tt>;
12: until i = M ;
13: K ← K + 1

M
KBK;

14: µ← µ + 1
M

b;
15: until iter = itermax

16: return K, µ;

5. RELATED WORK
Low-rank matrix factorization algorithms for collabora-

tive filtering can be roughly grouped into non-probabilistic
[4, 1, 5, 13] and probabilistic approaches [6, 10, 18]. In the re-
cent Netflix competition, low-rank matrix factorization was
extremely popular among the top participants, e.g. [5, 13,
10, 15, 18, 2].

Non-probabilistic nonparametric matrix factorization un-
der the trace norm regularization was introduced in [12].
The optimization was cast as a canonical semidefinite pro-
gramming (SDP) problem, which has a poor efficiency and
scalability. In [12], the algorithm was applied to handle only
a small 100×100 matrix. To improve its efficiency and scal-
ability, a faster approximation was subsequently proposed
in [8], which was in fact a parametric (non-convex) low-rank
method, similar to the formulation of SVD (2). Recently,
theoretical analysis of matrix completion under trace norm
regularization is becoming an active research area, e.g., [3].

The probabilistic NPCA is a nonparametric generaliza-
tion of the well-known parametric pPCA [14, 9]. Although
the dimensionality of latent factors goes to potentially in-
finity, the resultant nonparametric model, (9) or (19), is
conceptually simple — it is the maximum likelihood estima-
tor of a (very!) high-dimensional Gaussian from incomplete
data, a topic related to the recent development in nonpara-
metric Gaussian process regression [7]. Though this model
is more powerful in explaining data, it also demands much
more computation. As a consequence, despite the fact that
parametric matrix factorization has made a huge success in
building modern recommender systems, probabilistic non-
parametric models like NPCA have never been paid enough
attention in collaborative filtering research and practice.

We note that a further development of NPCA is intro-
duced in [16], where the nonparametric random effects model
(NREM) can be seen as a Bayesian version of NPCA that ad-
ditionally utilizes row-specific and column-specific attributes
in a multi-task learning setting.

6. EMPIRICAL STUDY

6.1 Experiments on EachMovie Data
We carry out a series of experiments on the entire Each-

Movie data set, which includes 74424 users’ 2811718 distinct

Table 1: RMSE of matrix factorization methods in
the EachMovie experiment

Method RMSE
SVD (d=20) 1.1636 ± 0.0006
SVD (d=40) 1.1552 ± 0.0006
NSVD 1.1323 ± 0.0002
pPCA (d=20) 1.1044 ± 0.0002
pPCA (d=40) 1.1013 ± 0.0003
NPCA 1.0795 ± 0.0003

Table 2: Runtime performances of matrix factoriza-
tion methods in the EachMovie experiment

Method Run Time Iterations
SVD (d=20) 6120 sec. 500
SVD (d=40) 8892 sec. 500
NSVD 255 sec. 5
pPCA (d=20) 545 sec. 30
pPCA (d=40) 1534 sec. 30
NPCA 2128 sec. 30

numeric ratings {1, 2, 3, 4, 5, 6} on 1648 movies. This is a
very sparse matrix since 97.17% of the elements are miss-
ing.

In our first setting, we randomly select 80% of each user’s
ratings for training and use the remaining 20% as test cases.
The random selection is repeated 20 times independently.
We focus on two groups of algorithms:

1. SVDs: Low-rank SVDs with 20 and 40 dimensions,
plus the NSVD described in Algorithm 1. The two low-
rank models, defined by (2), are optimized by conju-
gate gradient methods. The stopping criterion is based
on the performance on a small hold-out set of the train-
ing elements. For each algorithm, the regularization
parameter γ is chosen from {1, 5, 10, 20, 50, 100} based
on the performance on the first train/test partition.

2. PCAs: Low-rank pPCAs with 20 and 40 dimensions,
plus the NPCA described in Algorithm 3. For these
three methods the stopping criterion is also based on
the hold-out set, plus that the total number of EM
iterations should not exceed 30. We note that these
PCA algorithms have no regularization parameters to
tune.

The mean and standard error of RMSE (root-mean-square
error) averaged over all the 20 trials are listed in Table 1. We
can see that for either of the two categories, SVD and pPCA,
the nonparametric version consistently outperforms the low-
rank counterparts. Second, the probabilistic PCAs consis-
tently outperforms those SVD methods. Over all, NPCA is
the winner among all the methods.

We implement all the algorithms using C++. The average
run time results are reported by Table 2. SVD using con-
jugate gradients converges very slowly. As analyzed before,
NSVD and NPCA have almost the same computational cost
for a single EM iteration, but NSVD usually stops after 5
iterations due to the detected overfitting, while NPCA often
goes through 30 iterations. We observe that the performance
of NPCA on the holdout set saturates after some iterations,

Table 3: Comparison with state-of-the-art methods
in the literature, in terms of NMAE

Method Weak NMAE Strong NMAE
URP [8] 0.4422 ± 0.0008 0.4557 ± 0.0008
Attitude [8] 0.4520 ± 0.0016 0.4550 ± 0.0023
FMMMF [8] 0.4397 ± 0.0016 0.4341 ± 0.0023
MMMF-A100 [4] 0.4287 ± 0.0020 0.4300 ± 0.0031
NSVD 0.4548 ± 0.0005 0.4517 ± 0.0008
NPCA 0.4257 ± 0.0005 0.4255 ± 0.0011

Table 4: Comparison with state-of-the-art methods
in the literature in terms of runtime speed

Method Run Time
FMMMF [8] 15 hours
MMMF-A100 [4] 7 hours
NSVD 0.09 hours
NPCA 0.69 hours

and deteriorates very little as more iterations performed (see
Figure 2), which indicates overfitting is perhaps not a big
issue for NPCA. We conjecture that NPCA is immune to
overfitting, as long as M � N , which is often the case in
applications.

In our second setting, in order to directly compare with
several state-of-the-art results on EachMovie, we follow [8,
4], where 36,656 users with no less than 20 ratings are used;
for each user, one rating is randomly withdrawn for testing
and the remaining ratings are used for training; in each ran-
dom trial, 30,000 random users are selected for training, and
a performance of “weak generalization” is evaluated on the
training users’ withdrawn ratings; then the learned model
is used to make predictions on the rest 6,656 users, and
the so-called “strong generalization” is evaluated. For more
details please refer to [8]. We repeat this experiment ran-
domly for 20 times in testing each method. Following the
performance metric by [8, 4], we report the average NMAE
(i.e., mean absolute error normalized by 1.944) in Table 3,
where FMMMF is the fast max-margin matrix factorization,
and MMMF-A100 is an ensemble of 100 MMMF models
with different random seeds for initialization. The runtime
speed is reported in Table 4, which shows both nonparamet-
ric models work very well in terms of speed. We note that
FMMMF and MMMF-A100 both aim to directly minimize
the NMAE loss, while NPCA works on square loss. This
perhaps explains why NSVD does not give low NMAE. On
the other hand, NPCA applies square loss too, but it results
in the lowest NMAE in Table 3.

Table 5: RMSE of various matrix factorization
methods on the Netflix test set

Method RMSE
Baseline 0.9514
VB [6] 0.9141
SVD [5] 0.920
BPMF [10] 0.8954
NSVD 0.9216
NPCA 0.8926

Table 6: Influence of Initialization of K on NPCA

Initialization Option RMSE
1. Identity Matrix 1.0873 ± 0.0003
2. Emp. Covariance + Identity Mat. 1.0817 ± 0.0003
3. Emp. Cov. + Identity Mat. + Bias 1.0795 ± 0.0003

6.2 Netflix Problem
The Netflix data are collected representing the distribu-

tion of ratings Netflix.com obtained during a period of 1998-
2005. The released training data consists of 100,480,507
ratings from 480,189 users on 17,770 movies. In addition,
Netflix also provides a set of validation data with 1,408,395
ratings. Therefore there are 98.81% of elements are missing
in the rating matrix. In order to evaluate the prediction ac-
curacy, there is a test set containing 2,817,131 ratings whose
values are withheld and unknown for all the participants. In
order to assess the RMSE on the test set, participants need
to submit their results to Netflix. Since results are evaluated
on exactly the same test data, it offers an excellent platform
to compare different algorithms.

We run the Algorithms 1 and 3 on the training data plus
a random set of 95% of the validation data, the remaining
5% of the validation data are used for the stopping crite-
rion. In the following Table 5 we report the results obtained
by the two models, and quote some state-of-the-art results
reported in the literature by matrix-factorization methods.
We note that people reported superior results by combining
heterogenous models of different nature, e.g. [2]. In this pa-
per we only compare with those achieved by single models.
In the table, the Baseline result is made by Netflix’s own
algorithm. BPMF is Bayesian probabilistic matrix factor-
ization using MCMC [10], which produces so far the state-
of-the-art accuracy by low-rank methods. NPCA achieves
an even better result than BPMF, improving the accuracy
by 6.18% from the baseline. NSVD does not perform very
well on this data set, we suspect more work should be done
on fine-tuning the regularization parameter. However this
contrasts the advantage of NPCA that has no parameter to
tune. In terms of run-time efficiency, both algorithms use
about 5 hours per iteration. The NPCA result is obtained
by 30 iterations. In contrast, BPMF (with 300 dimensions)
takes several hundreds of iterations, 200 minutes per itera-
tion, to burn in, and then needs other hundreds of iterations
to compute the average.

6.3 Further Investigation on NPCA
NPCA performs very well in all of our experiments. In this

section we present a closer look at some empirical behaviors
of this model.

First, as the optimization is non-convex, we would exam
how initialization of K can influence the outcome of the
model. We initialize K in the following way

K = a · Cemp + b · I + c

where I is the N ×N identity matrix, [a, b, c] linear weights
taking values from [0, 1], and Cemp ∈ RN×N a rough empir-
ical covariance calculated from the training data,

Cemp
j,j′ =

σ2
0p

MjMj′σjσj′

MX
i=1

(xi,j − µj)(xi,j′ − µj′)

Figure 1: RMSEs obtained from initializing K via
various ways of combining empirical covariance and
identity matrix. The bar shows the relationship be-
tween gray level and RMSE.

where σ0 and σj are the standard deviations estimated, re-
spectively, from ratings on all the items and those on item
j, Mj is the number of observed ratings for item j, and µj

is the average of ratings on item j. Furthermore, we let
xi,j = µj if it is missing. Following the same setting of Ta-
ble 1, the performances of the following three initialization
options are reported in Table 6: (1) using identity matrix
only; (2) combining empirical covariance and identity ma-
trix; (3) combining empirical covariance, identity matrix,
and bias, where in each case the configuration of [a, b, c] is
determined based on the first of the totally 20 training/test
partitions. Table 6 shows that different initialization options
lead to slightly different results, but all are better than those
of competitive methods reported in Table 1. In Figure 1
we visualize the sensitivity of RMSE under various a and b
with fixed c = 0.5. The result is based on the first partition
only. We find that the performance is almost insensitive to c
(the evidence is not provided here due to space limitation).
Based on this figure we choose a = 0.3, b = 0.5, and c = 0.5
in the initialization option 3 in Table 6, which also leads to
the result in Table 1.

Since all the above results are obtained by limiting the
maximum number of EM iterations to be 30, one may ask
whether the superior performance is attributed to an im-
plicit regularization imposed by early stopping. In Figure 2
we demonstrate that, as the iterations go further, very little
drop of accuracy is observed under various initialization con-
ditions. Interestingly, it seems the major effect of a better
initialization is the faster convergence.

Another interesting and important aspect of NPCA is its
ability to output not only the mean but also the uncertainty
of predictions. It follows the E-step that the predictive stan-
dard deviation is calculated by

Std(xi,j) =
p

Kj,j −Kj,Oi(KOi)
−1KOi,j

We collect all the predictions whose uncertainty calculated
by the above falls in to [s− 0.05, s + 0.05], and measure the
standard deviation of their prediction residuals. Since 99.9%
of the predictive standard deviations are in [0.7, 1.6], we let
s ∈ {0.7, 0.8, . . . , 1.6}. The obtained results are shown in
Figure 3, which indicates that NPCA can give excellent as-
sessment on the uncertainty of predictions. We believe this

Figure 2: The convergence of RMSEs on test set
over EM iterations

Figure 3: Standard deviations of prediction residu-
als vs. standard deviations predicted by NPCA

aspect should be further exploited in future development of
recommender systems.

7. CONCLUSION
In this paper we proposed nonparametric matrix factor-

ization models for solving large-scale collaborative filtering
problems. We considered two examples, singular value de-
composition (SVD) and probabilistic principal component
analysis (pPCA). This is perhaps the first work showing
that nonparametric models are in fact very practical on very
large-scale data containing 100 millions of ratings. More-
over, though probabilistic approaches are usually believed
not as efficient as non-probabilistic methods, we managed
to make NPCA as fast as its non-probabilistic counterpart.
In terms of the predictive accuracy, we observed that non-
parametric models often outperformed the low-rank meth-
ods, and probabilistic models delivered more accurate re-
sults than non-probabilistic models. Furthermore, the com-
putation tricks can be used for speeding up not only non-
parametric models, but also large-dimensional matrix fac-
torization on large-scale sparse matrices.

Acknowledgement
We thank Dr. Dennis DeCoste for a fruitful discussion, and
the reviewers for constructive comments.

8. REFERENCES
[1] J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert.

Low-rank matrix factorization with attributes.
Technical report, Ecole des Mines de Paris, 2006.

[2] R. M. Bell, Y. Koren, and C. Volinsky. The BellKor
solution to the Netflix prize. Technical report, AT&T
Labs, 2007.

[3] E. J. Candès and T. Tao. The power of convex
relaxation: Near-optimal matrix completion.
Submitted for publication, 2009.

[4] D. DeCoste. Collaborative prediction using ensembles
of maximum margin matrix factorization. In The 23rd
International Conference on Machine Learning
(ICML), 2006.

[5] M. Kurucz, A. A. Benczur, and K. Csalogany.
Methods for large scale SVD with missing values. In
Proceedings of KDD Cup and Workshop, 2007.

[6] Y. J. Lim and Y. W. Teh. Variational Bayesian
approach to movie rating prediction. In Proceedings of
KDD Cup and Workshop, 2007.

[7] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2006.

[8] J. D. M. Rennie and N. Srebro. Fast maximum margin
matrix factorization for collaborative prediction. In
The 22nd International Conference on Machine
Learning (ICML), 2005.

[9] S. Roweis and Z. Ghahramani. A unifying review of
linear Gaussian models. Neural Computaion,
11:305–345, 1999.

[10] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using Markov chain Monte Carlo.
In The 25th International Conference on Machine
Learning (ICML), 2008.

[11] B. Schölkopf and A. J. Smola. Learning with Kernels.
MIT Press, 2002.

[12] N. Srebro, J. D. M. Rennie, and T. S. Jaakola.
Maximum-margin matrix factorization. In Advances in
Neural Information Processing Systems 18 (NIPS),
2005.

[13] G. Takacs, I. Pilaszy, B. Nemeth, and D. Tikk. On the
gravity recommendation system. In Proceedings of
KDD Cup and Workshop, 2007.

[14] M. E. Tipping and C. M. Bishop. Probabilistic
principal component analysis. Journal of the Royal
Statisitical Scoiety, B(61):611–622, 1999.

[15] M. Wu. Collaborative filtering via ensembles of matrix
factorizations. In Proceedings of KDD Cup and
Workshop, 2007.

[16] K. Yu, J. Lafferty, S. Zhu, and Y. Gong. Large-scale
collaborative prediction using a nonparametric
random effects model. In The 25th International
Conference on Machine Learning (ICML), 2009.

[17] K. Yu and V. Tresp. Learning to learn and
collaborative filtering. In NIPS workshop on
“Inductive Transfer: 10 Years Later”, 2005.

[18] Y. Zhang and J. Koren. Efficient Bayesian hierarchical
user modeling for recommendation systems. In The
30th ACM SIGIR Conference, 2007.

