
•First •Prev •Page 1 •Next •Last •Go Back •Full Screen •Close •Quit

Learning GPs from Multiple Tasks

Kai Yu1

Joint work with Volker Tresp1, and Anton Schwaighofer2

1 Corporate Technology, Siemens, Munich

2 Intelligent Data Analysis, Fraunhofer FIRST, Berlin



•First •Prev •Page 2 •Next •Last •Go Back •Full Screen •Close •Quit

Some Real-world Problems

Text categorization: One document belongs to multiple categories,
which might be related semantically.

Preference prediction: Users’ interests mutually influence each other.

Computer vision: The movements of different parts of a robot are
mutually constrained.

Sometimes we have to model multiple dependent functions!
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Modeling Dependency of Functions

Functions generated from an unknown underlying process

They share something in common

– Mean of those functions
– Local smoothness of functions
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Modeling Dependency of Functions

Functions generated from an unknown underlying process

Modeling Issues

– mean function of GPs
– non-stationary covariance of GPs
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Solution: Hierarchical Gaussian Processes

Learn the common structure and all the functions (what?)

Learn a non-stationary GP (a parametric kernel function?)

Learn non-stationary covariance of GP from a stationary base kernel
function (learn a GP prior in a nonparametric way! )
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Hierarchical Linear Functions

Simple, intuitive

It can be generalized to nonparametric hierarchical GPs (later) kernel
function (a nonparametric way! )
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Linear Models for Multi-Task Learning

Model 1 The multi-task linear model generates observations as follows

1. For task l, given xi, y
(l)
i ∼ N (w>

l xi, σ
2);

2. For each function fl = w>
l x, wl ∼ N (µw,Cw);

3. θ = {µw,Cw} follow a normal-inverse Wishart (NIW) distribution

µw,Cw ∼ N (µw|µw0
,
1

π
Cw)IW(Cw|τ,Cw0

). (1)

with the hyper parameters π, τ,Cw0
= I and µw0

= 0.

Comment : if π → ∞ and τ → ∞, then Cw = I and µw = 0, equiva-
lent to m independent regression models;
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Comments

Common predictive structure : Let wl = µw + vl, then:

– µw: the same for all the tasks
– vl: different over tasks, but follow the same distribution
N (0,Cw).

What to learn?

– Estimating θ: learn the common structure over tasks.
– Estimating wl: learn the functions for each tasks given the learned

θ.
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Maximum Penalized Likelihood Estimates

Joint distribution: p(y1, . . . ,ym,w1, . . . ,wm|θ) =
∏

l
1
Zl

exp
(
−

1
2J(wl)

)
, where

J(wl) =
1

σ2
‖yl −Xlwl‖2 + (wl − µw)TC−1

w (wl − µw)

marginalized log-likelihood :

L(θ) = ln p(y1, . . . ,ym|θ) =
∑

l

ln

∫
wl

1

Zl

exp
(
− 1

2
J(wl)

)
dwl

Estimates :

θ̂ = arg max
θ={µw,Cw,σ}

L(θ) + ln p(µw,Cw)
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Expectation-Maximization (EM)

E-step: For each fl, compute the sufficient statistics of p(wl|Dl, θ)
based on current θ.

ŵl = Cwl

( 1

σ2
Xᵀ

l yl + C−1
w µw

)
Cwl

=
( 1

σ2
Xᵀ

l Xl + C−1
w

)−1

M-step: update the estimates of parameters

µw =
1

π + m

∑
l

ŵl

Cw =
1

τ + m

{
πµwµᵀ

w + τI +
∑

l

Cwl
+

∑
l

[
ŵl − µw

][
ŵl − µw

]ᵀ
}

σ2 =
1∑
l nl

∑
l

‖yl −Xlŵl‖2 + tr[XlCwl
Xᵀ

l ]
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From Linear Models to GPs

If w ∼ N (µw,Cw), then a GP is defined with

– mean function µ = E[f (x)] = µT
wx

– covariance function K(x,x′) = xTCwx′

Implicit feature mapping : let Cw = UΛUT , it is easy to see K(x,x′) =
〈Φ(x), Φ(x′)〉, where

(
Φ(x)

)
k

=
√

λk〈x,uk〉;
The connection suggests that we can solve the problem in a nonpara-
metric way, namely by directly estimating the mean and kernel of a
function space.
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A Wishart Prior for GPs

For f l = [fl(x1), . . . , fl(xn)]
> realized on any finite set X =

[x1, . . . ,xn], it can be proven that our linear model equivalently spec-
ifies

– f l ∼ N (µf ,K)

– µf ,K also follow an NIW distribution N (µf |0, 1
π
K)IW(K|τ,κ)

where µf = µ>
wX, K = XCwX

> and κi,j = 〈xi,xj〉
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Transductive Multi-Task GPs

Model 2 (Transductive Model) Let f l be the values of fl on a set X, the gen-
erative model is as the following

1. µf ,K ∼ N (µf |0, 1
π
K)IW(K|τ,κ);

2. For each function fl, f
l ∼ N (µf ,K);

3. Given xi ∈ Xl, yl
i = f l

i + ε where ε ∼ N (0, σ2).

It can be again solved by EM algorithm .

Nonlinear functions obtained if a nonlinear base kernel function κ(·, ·)
is chosen;
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Comments

The model is equivalent to our linear model, but focuses on finite
number of data points;

Kernel Learning : A kernel matrix K is adapted from a base kernel
function κ(·, ·);
K can be expanded to include any new test points, as long as the base
kernel κ(·, ·) on them has been evaluated;

How to make predictions on new test points without retraining?
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Duality of NIW Distribution

Given f = [f (x1), . . . , f (xn)]
> and κ � 0, there exists a unique α ∈

Rn such that, f = κα

Then we can prove

– α ∼ N (µα,Cα)

– µα,Cα follow a NIW distribution with scale matrix κ−1:

p(µα,Cα) = N (µα|0,
1

π
Cα)IW(Cα|τ,κ−1) (2)

Comments: we can equivalently work on a generative model of
weights αl for f l = καl.
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Inductive Multi-Task Learning

Model 3 (Inductive Model) Let f l be the values of fl on a set X, satisfying
∪Xl ⊆ X. the generative model is defined as:

1. µα,Cα are generated once (2);

2. For each function fl, αl ∼ N (µα,Cα);

3. Given x ∈ Xl, y =
∑n

i=1 αl
iκ(xi,x) + ε where ε ∼ N (0, σ2), xi ∈ X.
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Finite Dimensionality of Mean Predictions

Good News :

– Theorem: we get exactly the correct predicted mean function (in-
dependent to unlabeled points in κ)

Bad News :

– The predictive variance for new test point cannot be fully ex-
plored (just a Schur complement)

To have full predictive variance on a new point, we have to incorpo-
rate this point into κ, and retrain the model (efficient way to do this?)
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Summarization of the Idea
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A Toy Problem
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Multi-Label Text Categorization (I)

Training set: fixed 50 categories, 10 random repeats to choose 1000
documents, 300 random labeled examples for each category

Test set: 10000 documents
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Multi-Label Text Categorization (II)

(a) (b) (c)
Generalization of learned kernels on other 31 categories (each measure

averaged over 50 repeats)
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Conclusions

Suggest a novel Bayesian multi-task framework to overcome the draw-
backs of reported methods

– capture both the first and second order dependency of functions;
– can handle nonlinear functions
– generalizable to new test points

Explore the equivalence between parametric linear approaches and
nonparametric GP approaches to multi-task learning

– The duality of Wishart distribution

Suggest a new kernel learning framework based on a base kernel func-
tion
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Related Work: Bayesian Methods

Parametric ...

Bayesian multi-task learning [Bakker & Heskes, 2003]: parametric,
easily overfitting since no control (prior) for θ.

Conjoint Analysis [Chapelle & Harchaoui 2005]: Similar to our model
in the linear case, not capable to handle nonlinear functions.

Nonparametric ...

Learning to learn with IVM [Lawrence & Platt 2004]: Explore the
sparsity of the common predictive structure, to reduce the compu-
tational complexity.

Learn GPs via Hierarchical Bayes [Schwaighofer, Tresp & Yu, 2005]
Learning multiple functions defined on fixed inputs, needs additional
step to handle new test points.
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Related Work: Non-Bayesian Methods

Regularized multi-task Learning [Evgeniou & Pontil 2004]:

– Learning multiple linear functions: fl(x) = wT
l x, l = 1, . . . ,m;

– Let wl = w0 + vl, where w0 is unchanged over functions, while
vl are independent of each other;

– Only consider the mean effect of functions

Learning predictive structure from multiple tasks [Ando & Zhang,
2005]: iterative alternating optimization, at each step, first estimate
w1, . . . ,wm, and then perform PCA on W = [w1, . . . ,wm], use the
leading k eigenvectors to constrain new estimates of w1, . . . ,wm;

– Seems to model covariance , but dimensionality has to be chosen
– Unclear how to handle nonlinear functions
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A Parametric View

independent tasks dependent tasks

The latent space captures the common structure .

One way to do supervised feature learning.

Any nonparametric treatment?
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A Function Space View

For each task
min
fl∈Hθ

∑
i

`
(
fl(xi), yi

)
+ λ‖fl‖2

Hθ

Optimize the function space Hθ, which captures the common struc-
ture of tasks

Unclear what objective function to optimize
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Thanks! Questions? Suggestions?


