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Some Real-world Problems

m Text categorization: One document belongs to multiple categories,
which might be related semantically.

m Preference prediction: Users’ interests mutually influence each other.

m Computer vision: The movements of different parts of a robot are
mutually constrained.

Sometimes we have to model multiple dependent functions!
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Modeling Dependency of Functions

m Functions generated from an unknown underlying process
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f(x)

.
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m They share something in common

— Mean of those functions

— Local smoothness of functions
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Modeling Dependency of Functions

m Functions generated from an unknown underlying process
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m Modeling Issues

— mean function of GPs
— non-stationary covariance  of GPs
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Solution: Hierarchical Gaussian Processes

Hier. GP f(x)

@ GP p(#6) @ GP p(f10)

O . ©

m Learn the common structure and all the functions (what?)

m

m Learn a non-stationary GP (a parametric kernel function?)

m Learn non-stationary covariance of GP from a stationary base kernel
function (learn a GP prior in a nonparametric way! )
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Outline

m Introduction
m Multi-task learning with linear models
m Multi-task learning with Gaussian processes

m Empirical study
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Hierarchical Linear Functions

Linear f(x) Nonlinear f(x)

e Gaussian p(w|6) @ GP p(f10)

®» - ©

m S !

m Simple, intuitive

m [t can be generalized to nonparametric hierarchical GPs (later) kernel
function (a nonparametric way! )
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Linear Models for Multi-Task Learning

Model 1 The multi-task linear model generates observations as follows
1. For task [, given x;, yy) ~ N(w/x;,0%);

2. For each function f; = w|x, w; ~ N (,,, Cy,);
3.0 ={p,, C,} follow a normal-inverse Wishart (NIW) distribution

1
P Co ~ N (Bl —Cu)IW(C, [T, Cy). (1)

with the hyper parameters 7,7, C,, = Land p,, = 0.

m Comment: if 1 — oo and 7 — oo, then C, = I and p,, = 0, equiva-
lent to m independent regression models;
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Comments

m Common predictive structure : Let w; = u,, + vy, then:

— p,,: the same for all the tasks
— v;:  different over tasks, but follow the same distribution

N(0,C,,).
m What to learn?

— Estimating 0: learn the common structure over tasks.

— Estimating w;: learn the functions for each tasks given the learned

6.
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Maximum Penalized Likelihood Estimates

m Joint distribution: p(yy,...,¥.,, Wi,...,W,|0) = ][] Zil exp ( —
1J(w;)), where

1 _
J(w;) = ;Hb’z — Xowi|* + (w; — )T CLH (W) — )

m marginalized log-likelihood

LO)=Inp(y,,...,y,.|0) = Zln/ Zexp (= =J(wy))dw,

z Wi

m Estimates :

O=arg max L(0)+np(py, Cw)
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Expectation-Maximization (EM)

m E-step: For each f;, compute the sufficient statistics of p(w;|D;, 0)
based on current 6.

: 1 ]
Wi = Cwl (;X;yl + Cwlﬂ'w)
1 -1
Cu, = (5X1X+ C;')
o

m M-step: update the estimates of parameters

1 .
He = m z b
1 . .
C, = n m{wuwu;} +7I+ zl: C,, + zl: [Wz — l’l’wi| [Wz - Nwr}
1
0’ = > llye = Xowi|* + X, C X
l

L

oFirst ePrev ePage 12 eNext eLast ®Go Back e®Full Screen eClose oQuit



Outline

m Introduction
m Multi-task learning with linear models
m Multi-task learning with Gaussian processes

m Empirical study

oFirst ePrev ePage 13 eNext eLast ®Go Back e®Full Screen eClose oQuit



From Linear Models to GPs

mIfw ~ N(u,, C,), then a GP is defined with
— mean function p = E[f(x)] = plx
— covariance function K (x,x’) = x' Cyx/

m Implicit feature mapping : let Cy, = UAU”, itis easy to see K (x,x') =
(®d(x), D(x')), where (@(X))k = Vu(x,up.);

m The connection suggests that we can solve the problem in a nonpara-
metric way, namely by directly estimating the mean and kernel of a
function space.
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A Wishart Prior for GPs

mFor f;, = [fi(x)),..., fi(x,)]" realized on any finite set X =
X1, ...,X,], it can be proven that our linear model equivalently spec-
ifies
- ~ N(“’fa K)

— pe, K also follow an NIW distribution N (pee|0, 1K) ZW (K7, k)
where p; = ul X, K = XC, X' and k;; = (x;, X;)
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Transductive Multi-Task GPs

Model 2 (Transductive Model) Let ' be the values of f, on a set X, the gen-
erative model is as the following

1. pe, K ~ N (|0, 2 K)IW(K|T, K);

2. For each function f,, f' ~ N (e, K);

3. Givenx; € X,y = ' + ¢ where e ~ N(0, 0?).
m [t can be again solved by EM algorithm .

m Nonlinear functions  obtained if a nonlinear base kernel function (-, -)
is chosen;
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Comments

m The model is equivalent to our linear model, but focuses on finite
number of data points;

m Kernel Learning : A kernel matrix K is adapted from a base kernel
function (-, -);

m K can be expanded to include any new test points, as long as the base
kernel x(-, ) on them has been evaluated;

m How to make predictions on new test points without retraining?
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Duality of NIW Distribution

m Given f = [f(x),..., f(x,)]" and k = 0, there exists a unique & €
R"™ such that, f = K

m Then we can prove

-~ N(l’l’on COé)

- p,,, C, follow a NIW distribution with scale matrix K

1
Plbar Co) = N J0,—COIW(C lrw7) @)

Comments: we can equivalently work on a generative model of
weights o for f; = Kay.
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Inductive Multi-Task Learning

Model 3 (Inductive Model) Let f' be the values of f, on a set X, satisfying
UX,; € X. the generative model is defined as:

1. p,, C, are generated once (2);
2. For each function f;, al ~ N(Hoﬂ C.);
3. Givenx € X,y =Y. alk(x;,X) + € where e ~ N(0,0%), x; € X.

?
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Finite Dimensionality of Mean Predictions

m Good News :

— Theorem: we get exactly the correct predicted mean function (in-
dependent to unlabeled points in k)

m Bad News::

— The predictive variance for new test point cannot be fully ex-
plored (just a Schur complement)

m To have full predictive variance on a new point, we have to incorpo-
rate this point into k, and retrain the model (efficient way to do this?)
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Summarization of the Idea

f(x)

Sample Functions
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A Toy Problem
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(a) Toy Data (b) True Kernel Matrix
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(¢) Base Kernel Matrix (d) Learned Kernel Matrix

oFirst ePrev ePage 23 eNext elLast ®Go Back eFull Screen eClose eQuit



Multi-Label Text Categorization (I)

Table 1: Text Categorization on RCV1

ALL PARTIALLY LABELED

AUC F-micro F-macro AUC  F-micro F-MAcCRrO
Murri-Task GP 0.773 0.605 0.260 0.826 0.623 0.281
RipGE REGRESSION  0.756 0.584 0.245 0.771 0.564 0.240
SVNM 0.697 0.573 0.221 0.716 0.547 0.212

m Training set: fixed 50 categories, 10 random repeats to choose 1000
documents, 300 random labeled examples for each category

m Test set: 10000 documents
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Multi-Label Text Categorization (ll)
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Conclusions

m Suggest a novel Bayesian multi-task framework  to overcome the draw-
backs of reported methods

— capture both the first and second order dependency of functions;
— can handle nonlinear functions

— generalizable to new test points

m Explore the equivalence between parametric linear approaches and
nonparametric GP approaches to multi-task learning

— The duality of Wishart distribution

m Suggest a new kernel learning framework based on a base kernel func-
tion
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Related Work: Bayesian Methods

Parametric ...

m Bayesian multi-task learning [Bakker & Heskes, 2003]: parametric,
easily overfitting since no control (prior) for 6.

m Conjoint Analysis [Chapelle & Harchaoui 2005]: Similar to our model
in the linear case, not capable to handle nonlinear functions.

Nonparametric ...

m Learning to learn with IVM [Lawrence & Platt 2004]: Explore the
sparsity of the common predictive structure, to reduce the compu-
tational complexity.

m Learn GPs via Hierarchical Bayes [Schwaighofer, Tresp & Yu, 2005]
Learning multiple functions defined on fixed inputs, needs additional
step to handle new test points.
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Related Work: Non-Bayesian Methods

m Regularized multi-task Learning [Evgeniou & Pontil 2004]:

— Learning multiple linear functions: fi(x) =wix,l=1,...,m;

— Let w; = w, + v;, where w;, is unchanged over functions, while
v, are independent of each other;

— Only consider the mean effect of functions
m Learning predictive structure from multiple tasks [Ando & Zhang,
2005]: iterative alternating optimization, at each step, first estimate
Wi, ..., W, and then perform PCA on W = [wy,..., w,], use the
leading £ eigenvectors to constrain new estimates of wy, ..., w,,;
— Seems to model covariance , but dimensionality has to be chosen

— Unclear how to handle nonlinear functions
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A Parametric View

inputs inputs

latent features

multiple outputs

independent tasks dependent tasks

m The latent space captures the common structure .
m One way to do supervised feature learning.

m Any nonparametric treatment?
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A Function Space View

m For each task

min Zf fi(x:), vs +)\Hle'H9

fi€Hy

m Optimize the function space Hy, which captures the common struc-
ture of tasks

m Unclear what objective function to optimize
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Thanks! Questions? Suggestions?
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