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ABSTRACT

Vast amounts of structured information have been published
in the Semantic Web’s Linked Open Data (LOD) cloud and
their size is still growing rapidly. Yet, access to this infor-
mation via reasoning and querying is sometimes difficult,
due to LOD’s size, partial data inconsistencies and inherent
noisiness. Machine Learning offers an alternative approach
to exploiting LOD’s data with the advantages that Machine
Learning algorithms are typically robust to both noise and
data inconsistencies and are able to efficiently utilize non-
deterministic dependencies in the data. From a Machine
Learning point of view, LOD is challenging due to its re-
lational nature and its scale. Here, we present an efficient
approach to relational learning on LOD data, based on the
factorization of a sparse tensor that scales to data consisting
of millions of entities, hundreds of relations and billions of
known facts. Furthermore, we show how ontological knowl-
edge can be incorporated in the factorization to improve
learning results and how computation can be distributed
across multiple nodes. We demonstrate that our approach
is able to factorize the YAGO 2 core ontology and glob-
ally predict statements for this large knowledge base using
a single dual-core desktop computer. Furthermore, we show
experimentally that our approach achieves good results in
several relational learning tasks that are relevant to Linked
Data. Once a factorization has been computed, our model is
able to predict efficiently, and without any additional train-
ing, the likelihood of any of the 4.3 · 1014 possible triples in
the YAGO 2 core ontology.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing ; E.1 [Data Structures]: Graphs and Networks
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1. INTRODUCTION
The Semantic Web’s Linked Open Data (LOD) [6] cloud

is growing rapidly. At the time of this writing, it consists
of around 300 interlinked databases, where some of these
databases store billions of facts in form of RDF triples.1

Thus, for the first time, relational data from heterogeneous,
interlinked domains is publicly available in large amounts,
which provides exciting opportunities for Machine Learning.
In particular, much progress has been made in recent years
in the subfield of Relational Machine Learning to learn ef-
ficiently from attribute information and information about
the entities’ relationships in interlinked domains. Some Re-
lational Machine Learning approaches can exploit contex-
tual information that might be more distant in the relational
graph, a capability often referred to as collective learning.
State-of-the-art collective learning algorithms can therefore
be expected to utilize much of the information and patterns
that are present in LOD data. Moreover, the Semantic Web
itself can benefit from Machine Learning. Traditional Se-
mantic Web approaches such as formal semantics, reasoning
or ontology engineering face serious challenges in processing
data in the LOD cloud, due to its size, inherent noisiness
and inconsistencies. Consider, for example, that owl:sameAs
is often misused in the LOD cloud, leading to inconsisten-
cies between different data sources [13]. Further examples
include malformed datatype literals, undefined classes and
properties, misuses of ontological terms [16] or the model-
ing of a simple fact such as Nancy Pelosi voted in favor of
the Health Care Bill using eight RDF triples [15]. Partial
inconsistencies in the data or noise such as duplicate enti-
ties or predicates are direct consequences of the open nature
of Linked Open Data. For this reason, it has been recently
proposed to look at alternative approaches for new Semantic
Web reasoning paradigms [15]. The underlying idea is that
reasoning can often be reduced to the task of classifying the
truth value of potential statements. By abandoning require-
ments such as logical soundness and completeness, this clas-
sification could be carried out by approximate methods, such
as Machine Learning. Moreover, it is reasonable to assume
that there exist many dependencies in the LOD cloud which
are rather statistical in nature than deterministic, such that
statistical methods have the potential to add significant sur-
plus value in combination with what reasoning already pro-
vides. Reliable predictions of unknown triples in the scale
of entire knowledge bases could mark a first step towards

1Information taken from http://lod-cloud.net
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this new reasoning paradigm for the Semantic Web. Here,
in our approach to this challenge, we focus on the YAGO 2
ontology [27], a large knowledge base that lies, along with
other databases such as DBpedia [2], at the core of the LOD
cloud.
Applying Machine Learning to Linked Data at this scale

however, is not trivial. For instance, due to the linked na-
ture of the data, using a relational learning approach is
mandatory. But relational learning algorithms often require
a considerable amount of prior knowledge about the domain
of discourse, e.g. a knowledge base for Markov Logic Net-
works (MLN) [24] or the structure of a Bayesian Network.
This can become a obstacle when applying Machine Learn-
ing to Linked Open Data, since it is difficult and expensive
to gather this kind of knowledge manually or automatically.
Also, many relational learning algorithms have problems to
process data of the size that is required to approach serious,
real-life Semantic Web problems as these algorithms usually
do not scale well with the number of known facts or enti-
ties in the data. Another challenge for Machine Learning is
that knowledge bases in the Linked Open Data cloud often
contain only positive examples of instantiated relations and
it is not valid to infer the non-existence of a relation from
its absence in the data, due to an underlying open-world
assumption.
Here, we address these challenges in the following way.

First, we opted for tensor factorization as the learning ap-
proach. Tensor factorizations, just as matrix factorizations,
have shown excellent performance in high dimensional and
sparse domains. We will demonstrate, that tensors are suit-
able for Semantic Web data and fit nicely to the triple-
structure of RDF(S) data due to their multi-way nature.
In particular, we employ RESCAL, a tensor factorization
for relational learning, which has been shown to produce
very good results on canonical relational learning tasks. We
present a novel implementation to compute this factorization
that honors the sparsity of LOD data and can scale to large
knowledge bases, even on commodity hardware. Further-
more, we present an extension to the RESCAL algorithm
to handle attributes of entities efficiently. By using this ex-
tension in combination with RESCAL, handling of Seman-
tic Web data becomes straightforward. RDF(S) data can
be transformed automatically into a tensor representation,
while training the model only requires minimal prior infor-
mation about the domain of discourse such as the number
of latent variables in the data and, for complex models, op-
tional regularization parameters. To improve scalability be-
yond the capabilities of a single computer, we also show how
the factorization can be computed across multiple nodes, us-
ing distributed computing paradigms such as map-reduce.

2. RELATED WORK
Despite their long tradition in fields like psycho- and chemo-

metrics, tensors and tensor factorizations have only recently
been applied to Machine Learning, e.g. to incorporate dy-
namic aspects in network models. For instance, [28] presents
methods for dynamic and streaming tensor analysis and ap-
plies them to network traffic and bibliographic data. In [23],
a specialized tensor factorization for personalized item rec-
ommendations is used to include information of the preced-
ing transaction. For relational learning, [29] introduced the
Bayesian Clustered Tensor Factorization (BCTF) and ap-
plied it to various data sets of smaller and medium size.

An extensive review of tensor decompositions and their ap-
plications can be found in [20]. In the context of the Se-
mantic Web, Inductive Logic Programming (ILP) and ker-
nel learning have been the dominant Machine Learning ap-
proaches so far [7, 9, 11]. Furthermore, [17] uses regular-
ized matrix factorization to predict unknown triples in Se-
mantic Web data. Recently, [21] proposed to learn Rela-
tional Bayesian Classifiers for RDF data via queries to a
SPARQL endpoint. Also, the work on SPARQL-ML [18] ex-
tends SPARQL queries to support data mining constructs.
[5] employs a coevolution-based genetic algorithm to learn
kernels for RDF data. Probably most similar to our ap-
proach is TripleRank [12], which applies the CP [8] tensor
decomposition to RDF graphs for faceted browsing. How-
ever, in contrast to the tensor factorization employed in this
paper, CP isn’t capable of collective learning, which is an
important feature for learning on the Semantic Web. Re-
cently, methods such as association rule mining and knowl-
edge base fragment extraction have been applied to large Se-
mantic Web databases for tasks like schema induction and
learning complex class descriptions [31, 14]. To the best
of our knowledge, there have yet not been any attempts to
apply a general relational learning approach to knowledge
bases of the size considered in this paper.

3. THE MODEL
Our approach to large-scale learning on the Semantic Web

is based on RESCAL, a tensor factorization that has shown
very good results in various canonical relational learning
tasks such as link prediction, entity resolution or collec-
tive classification [22]. The main advantage of RESCAL,
if compared to other tensor factorizations, is that it can ex-
ploit a collective learning effect when applied to relational
data. Collective learning refers to the automatic exploita-
tion of attribute and relationship correlations across mul-
tiple interconnections of entities and relations. It is known
that applying a collective learning method to relational data
can improve learning results significantly [26]. For instance,
consider the task of predicting the party membership of a
president of the United States of America. Naturally, the
party membership of the president and his vice president
are highly correlated, since both persons have mostly been
members of the same party. These correlations along the
vicePresidentOf and partyOf relations can be exploited
by a collective learning method to infer the correct party
membership of a person in this domain. It has been shown
in [22] that RESCAL is able to detect such correlations, be-
cause it has been designed to account for the inherent struc-
ture of dyadic relational data. Since attributes and complex
relations are often connected by intermediary nodes such
as blank nodes or abstract entities when modeled accord-
ing to the RDF formalism, this collective learning ability of
RESCAL is a very important feature for learning on the Se-
mantic Web.2 The following sections will present in more
detail the RESCAL algorithm, will discuss how RDF(S) data
is modeled as a tensor in RESCAL and will introduce some
novel extensions to the algorithm.

2For instance, in the current version of the DBpedia
ontology (3.7), geographical locations such as river mouth
locations are modeled by the following pattern (Rhone,
mouthPosition, Rhone-mouthPosition), (Rhone-
mouthPosition, longitude, 4.845555782318115).
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Figure 1: Graphical representations of RESCAL. (a) Illustration of data representation and factorization in RESCAL. (b)
Graphical model of the RESCAL factorization in plate notation. Observed variables are shaded gray.

3.1 Modeling Semantic Web Data
Let a relational domain consist of n entities and m dyadic

relation types. Using RESCAL, such data is modeled as a
three-way tensor X of size n× n×m, where the entries on
two modes of the tensor correspond to the combined enti-
ties of the domain of discourse and the third mode holds the
m different types of relations. A tensor entry Xijk = 1 de-
notes the fact that the relation k-th Relation(i-th entity, j-th
entity) exists. Otherwise, for non-existing or unknown rela-
tions, Xijk is set to zero. This way, RESCAL approaches the
problem of learning from positive examples only, by assum-
ing that missing triples are very likely not true, an approach
that makes sense in a high-dimensional but sparse domain.
Figure 1a shows an illustration of this modeling method.
Each frontal slice Xk = X:,:,k of X can be interpreted as the
adjacency matrix of the relational graph for the respective
relation k.
Creating such a tensor representation for RDF(S) data

is straightforward. The entities are given by the set of
all resources, classes and blank nodes in the data, while
the set of relations consists of all predicates that include
entity-entity relationships. For each existing triple (i-th

entity, k-th predicate, j-th entity), the correspond-
ing entry Xijk is set to one, otherwise it is set to zero. Since
the original RESCAL model assumes that two of the three
modes are defined by entities, this procedure is constrained
to resources. However, much of the information in the LOD
cloud is given as literal values. For this reason, we present
an efficient extension to RESCAL in Section 3.5, such that
attributes of entities, i.e. literal values, can be included in
the factorization.
It is also important to note that in this modeling of RDF(S)

data, we do not draw a distinction between ontological knowl-
edge (i.e. RDFS in the T -Box) and instance data (the A-
Box). Instead, for a given domain, classes and instances of
these classes are modeled equally as entities in the tensor X .
Furthermore, all predicates from the T -Box and the A-Box
form the slices Xk of X . This way, ontological knowledge is
represented similarly to instance data by an appropriate en-
try Xijk = 1, such that facts about instances as well as data
from ontologies are integrated simultaneously in one tensor
representation. In doing so, ontologies are handled like soft
constraints, meaning that the additional information present
in an ontology guides the factorization to semantically more

reasonable results, but doesn’t impose hard constraints on
the model. Consequently, our modeling has aspects of both
a pure data-centric and an ontology-driven Semantic Web
approach.

3.2 Factorizing Semantic Web Data
Given a tensor X of size n × n × m that has been con-

structed as described in Section 3.1, RESCAL computes a
factorization of X , such that each frontal slice Xk of X is
factorized into the matrix product

Xk ≈ ARkA
T , for k = 1, . . . ,m

where A is a n × r matrix, Rk is a full, asymmetric r × r
matrix and r is a user-given parameter that specifies the
number of latent components or factors. The factor-matrices
A and Rk are computed by solving the optimization problem

min
A,R

floss(A,R) + freg(A,R) (1)

where

floss(A,R) =
1

2

(

∑

k

‖Xk −ARkA
T ‖2F

)

(2)

and freg is the regularization term

freg(A,R) = λA‖A‖
2
F + λR

∑

k

‖Rk‖
2
F (3)

which is included to prevent overfitting of the model.
RESCAL can be regarded as a latent-variable model for

multi-relational data. Let ai denote the i-th row of A. Then,
(1) explains observed variables, i.e. Xijk, through latent fea-
ture vectors ai, aj and Rk. Figure 1b illustrates this in-
terpretation as a graphical model in plate notation. In this
model, ai and aj are representations of the i-th and j-th en-
tity by latent components, i.e. the columns of A, which have
been derived by the factorization to explain the observed
variables.3 Furthermore, an additional interpretation of A
is as an embedding of the entities into a latent-component

3For instance, in the US presidents example, a latent-
variable model could try to explain observed data such as
party membership via the latent components conservative
politician, liberal politician, conservative party, liberal party
etc. Unfortunately, in many cases, including RESCAL, the
invented latent components are not easily interpretable.
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space, where the entities’ similarity in this space reflects
their similarity in the relational domain. Rk, on the other
hand, models the interactions of the latent components in
the k-th predicate. Expressing data in terms of newly in-
vented latent components is often referred to as predicate
invention in statistical relational learning and considered a
powerful asset [19].
To solve (1), [22] presents an efficient alternating least

squares algorithm, which updates A and Rk iteratively until
a convergence criterion is met. In the following, we will refer
to this algorithm as RESCAL-ALS. In detail, updates for A
and R are computed by
Update A:

A←

[

m
∑

k=1

XkART
k +XT

k ARk

][

m
∑

k=1

Bk + Ck + λAI

]−1

where

Bk = RkA
TART

k , Ck = RT
k A

TARk

Update Rk:

Rk ←
(

ZTZ + λRI
)−1

ZTvec(Xk)

where Z = AT ⊗AT and ⊗ denotes the Kronecker product.
However, computing the update steps of Rk in this form

would be intractable for large-scale data, since it involves
the r2×n2 matrix Z. Fortunately, similar to the ASALSAN
algorithm [4], it is possible to use the QR decomposition of A
to simplify the update steps for Rk significantly. The basic
idea is to minimize for each Rk a function that is equivalent
to (2), namely

min
Rk

‖X̂k − ÂRkÂ
T ‖2F

where A = QT Â is the result of the QR decomposition of
A and X̂k = QTXkQ. By using X̂k and Â as replacements
for A and Xk in the update of Rk, this step is now only
dependent on the number of latent components, since Â and
X̂k are only r × r matrices.
The starting points for A and Rk can be random matrices

or, as an alternative, A is initialized from the eigendecom-
position of

∑

k(Xk +XT
k ). To compute the factor matrices,

the algorithm performs alternating updates of A and all Rk

until f(A,R)

‖X‖2
F

converges to some small threshold ǫ or a max-

imum number of iterations is exceeded. However, for large-
scale learning, these convergence criteria are not applicable,
since computing a dense, n × n matrix ARkA

T would of-
ten exceed available memory. To overcome this problem, we
employ two alternative methods to measure the progress of
the algorithm in order to determine a reasonable number of
iterations. One method is to compute the fit on a smaller
sample of X and the corresponding rows of A. The drawback
of this approach is that the fit value measured on a sample of
the original data will not decrease monotonically, since (1)
optimizes a slightly different function. However, when the
true fit value approaches convergence, the surrogate func-
tion will also converge. Another option is to analyze the
change of the model in each iteration using some measure,
e.g. ‖A−Aold‖2F +

∑

k ‖Rk −Rold
k ‖

2
F . The minor drawback

of this approach is that the factor matrices of the previous
iteration are required.

3.3 Usage Scenarios on the Semantic Web
Once the factorization has been computed, RESCAL can

be applied to various relational learning problems relevant
to the Semantic Web. In the following we briefly describe
some of these scenarios from a Semantic Web perspective.

3.3.1 Prediction of Unknown Triples

RESCAL can be used to predict the existence of unknown
triples. In particular, the matrix-vector product X̂ijk =
aT
i Rkaj can be interpreted as the score that the model

assigns to the existence of the triple (i-th entity, k-th

predicate, j-th entity). This value X̂ijk can then be
compared to a given threshold θ in order to determine whether
the triple in question is expected to exist. However, due to
a general sparseness of relationships there is a strong bias
towards zero, which makes it difficult to select a reasonable
threshold θ. When it is not necessary to determine whether
a particular triple exists, but the objective is to retrieve
triples by their likelihood, for instance the most likely per-
sons in the data to be born in Lyon, a better alternative is to
create a ranking of the entries in question. Note that infer-
ence is very fast. To determine which entities are most likely
to have a specific link to entity aj , it is sufficient to com-
pute the matrix product ARkaj . This is a nice property of
RESCAL compared to other relational learning approaches
where exact inference is often intractable.

3.3.2 Retrieval of Similar Entities

A particular strength of the RESCAL factorization is that
it computes a global latent-component representation of the
entities, i.e. the matrix A, and local interaction-models of
the latent variables for each predicate, i.e. the matrices Rk.
Analogous to the retrieval of documents via latent-variable
models, the entities’ latent-component representations that
have been computed with RESCAL can be used to retrieve
similar entities. As mentioned in Section 3.2, the matrix A
can be interpreted as an embedding of the entities into a
latent-component space that reflects their similarity over all
relations in the domain of discourse. Therefore, in order to
retrieve entities that are similar to a particular entity e with
respect to all relations in the data, it is sufficient to compute
a ranking of entities by their similarity to e in A. This can
be done efficiently, since A is an n× r matrix.

3.3.3 Decision Support for Knowledge Engineers

Another very interesting application of RESCAL is the
automatic creation of taxonomies from instance data. Re-
cently, it has been proposed that Machine Learning methods
should assist knowledge engineers in the creation of ontolo-
gies, such that an automated system suggests new axioms
for an ontology, which are added under the supervision of an
engineer [3]. Here, we focus on the simpler task of learning
a taxonomy from instance data. A taxonomy can be inter-
preted as a hierarchical grouping of instances. Consequently,
a natural approach to learning a taxonomy for a particular
domain is to compute a hierarchical clustering of the enti-
ties in this domain and to interpret the resulting clusters
according to their members. However, there are only very
few approaches that are able to compute a hierarchical clus-
tering for multi-relational data [25]. To compute such a
clustering with RESCAL, we use again the property of A to
reflect the similarity of entities in the relational domain, and
simply compute a clustering in the latent-component space.
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Table 1: Computational complexity for operations in the
update steps of A and R

Update A
Computation Complexity

XkART
k ∧XT

k ARk O(pnr) +O(nr2) each
Bk ∧ Ck O(nr2) each
Matrix inversion O(r3)

Update Rk

Computation Complexity

QR decomp. of A O(nr2)
Projection QTXkQ O(pnr2)
Matrix inversion O(r3)/O(r5) λ = 0/λ 6= 0
(ZTZ)−1ZTvec(Xk) O(pr3)

This has the advantage that any feature-based hierarchical
clustering algorithm can readily be applied to this matrix,
since A represents entities only by their participation in the
latent components. The clustering, however, will still be
determined by the entities’ similarities in the relational do-
main. While our approach differs in some important aspects
from the system envisioned in [3], it can be used to address
some of the discussed challenges, in particular scalability.

3.4 Complexity of a Sparse Implementation
To be able to scale to large knowledge bases, it is nec-

essary for a learning algorithm to have low computational
complexity and low memory usage. Relational data is usu-
ally very sparse, what causes each predicate slice Xk in the
tensor representation of RESCAL to be also very sparse.
By using sparse linear algebra, we can exploit this prop-
erty of Xk and provide a very scalable implementation of
RESCAL-ALS. In the following we present an analysis of a
sparse implementation under the assumption that Xk is a
sparse matrix, while A and Rk are dense matrices. We will
show that such an implementation features the very desir-
able property to have only linear computational complexity
with regard to the number of entities or predicates in the
dataset as well as with regard to the number of known facts.
The update steps for A and R are obviously linear in the

number of predicates m, regardless of the sparsity of X ,
since this parameter occurs only in the summation indices
of (1). However, the computational complexity with regard
to the number of entities n, the number of nonzero entries
p in X and the model complexity, i.e. the number of latent
components r, is more elaborate. Table 1 shows the com-
plexity of each operation in the update steps of A and R in
terms of these parameters. In this analysis, we used O(pnl)
as the runtime complexity for the matrix product of a sparse
matrix U with a dense n× l matrix V , where p is the num-
ber of non-zeros in U . The operations listed in Table 1 are
iterated only a small number of times until the algorithm
converges or a maximum number of iterations is reached.
Consequently, the computational complexity of a sparse im-
plementation of the RESCAL-ALS algorithm is linear in n
or m and superlinear only in the model complexity r. As it
holds that

(ZTZ)−1ZT = (ATA)−1AT ⊗ (ATA)−1AT

the O(n5)-operations in the update step for Rk can be re-

duced toO(n3) complexity in the non-regularized case. Also,
since the number of non-zeros in a particular slice p occurs
only as a linear factor, the algorithm has also linear com-
putational complexity with regard to the number of known
facts.

Concerning the scalability of RESCAL-ALS, it is also in-
teresting to note that the algorithm can be computed easily
in a distributed way. For models with complexity r the
dominant costs in each update step are the matrix multipli-
cations XkART

k +XT
k ARk, and (ZTZ)−1ZTvec(Xk), since

O(r3) < O(pnr2) for p > 1. Due to the sums in the up-
date of A, this step can be computed distributedly by using
a map-reduce approach. First, the current state of A and
Rk is distributed to a number of available computing nodes.
Then, these nodes compute XkART

k +XT
k ARk and Bk +Ck

locally, for those k that have been assigned to them. Given
the results of these computations, the master node can re-
duce the results and compute the matrix inversion, which
only involves r × r matrices and the final matrix product.
Since the updates of Rk are independent of each other, these
steps can be computed in a similar way.

Let’s now consider the memory complexity of RESCAL:
In each iteration, only one frontal slice Xk has to be kept in
memory. Since sparse matrices usually have a linear mem-
ory complexity O(p) with regard to the number of nonzero
elements in a matrix, our approach scales up to billions of
known facts. However, the factor matrices are more de-
manding in terms of memory, especially A, a dense n×r ma-
trix, such that if the domain contains a very large number
of entities, additional dimensionality reduction techniques
such as the “hashing trick” [32] might be required.

3.5 Adding Attributes to the Factorization
In its original form, RESCAL doesn’t recognize attributes

of entities explicitly. However, much information in the
LOD cloud is in the form of attributes. Also, attributes
would allow us to include simple, automatically aggregated
features, such as (entity, hasRelation, relation name)

that can be useful in some prediction tasks. A näıve ap-
proach to include attributes in the factorization would be
to add an additional slice m + 1 for attributes and to ap-
ply some form of preprocessing to the attribute values in
the data4 The results of this preprocessing step would then
be added together with their respective predicate as new
indices n + 1, . . . , n + l to the entity modes of X . Further-
more, for each attribute value o of an entity i, those entries
Xi,m+1,n+j would be set to one, where n+ j corresponds to
o. For instance, assuming that textual data is preprocessed
by tokenizing, an attribute (Albert_Einstein, foaf:name,

’Albert Einstein’) would set those entries Xijk = 1 where
i ≡ Albert_Einstein, k ≡ m + 1, and j ≡ <foaf:name,

’Albert’> or j ≡ <foaf:name, ’Einstein’>. While this
handling of attributes can work for small datasets, it is not
applicable for large-scale learning on the Semantic Web, as it
would increase the dimensionality of the entity modes dra-
matically. The main problem associated with this proce-
dure is that attributes are included as true entities, although
they never occur as subjects in a relation. Since RESCAL
assumes a tensor with frontal slices of size n × n, a huge
amount of entries would be wasted in the tensor, what in

4For instance discretizing continuous variables or tokenizing
and stemming textual data

WWW 2012 – Session: Creating and Using Links between Data Objects April 16–20, 2012, Lyon, France

275



(a)

Update A
Additional Computations Complexity

DV T O(pnr)
V V T O(nr2)

Update V
Computation Complexity

(ATA+ γI)−1ATD O(pnr) +O(r3) +O(nr2)

(b)

Figure 2: (a) RESCAL model with attributes. (b) Complexity added through attributes.

turn would lead to an increased runtime since a significantly
larger tensor would have to be factorized. Figure 2a shows
an illustration of this effect. To overcome this problem, we
propose to handle attributes by a separate matrix factoriza-
tion which we perform jointly with the tensor factorization.
The basic idea is to process attribute values just as described
above, but to add the <predicate, value> pairs to a sep-
arate entity-attributes matrix D and not to the tensor X .
Therefore, D is constructed similar as in the relational learn-
ing algorithm SUNS [17]. The entity-attributes matrix D is
then factorized into

D ≈ AV

where A is the entities’ latent-component representation of
the RESCAL model and V is an r × l matrix, which pro-
vides a latent-component representation of the attributes.
To include this matrix factorization as an additional con-
straint on A in the tensor factorization of X , we add the
term fattr(A, V ) to the minimization problem (1), such that

min
A,R,V

floss(A,R) + freg(A,R) + fattr(A, V )

and

fattr(A, V ) = ‖D −AV ‖2F + λV ‖V ‖
2
F

To adapt the RESCAL-ALS algorithm to this new objective,
the update step of A has to be changed and a new update
step for V has to be included. In particular, the update
steps for A and V become
Update A:

A←

[

DV T +
m
∑

k=1

XkART
k +XT

k ARk

]

×

[

V V T +
m
∑

k=1

Bk + Ck + λAI

]−1

where Bk, Ck are identical as in updates without attributes.
Update V :

V ←
(

ATA+ λV I
)−1

ATD

Handling attributes in this way is essentially equivalent
to the näıve approach, but significantly more efficient to
compute. Figure 2b lists the computational complexity of
the additional operations that are necessary to include at-

tributes in the factorization.5 It can be seen, that while
the additional operations will increase the runtime of the
algorithm, they do not alter the linear scalability.

4. EVALUATION
In order to evaluate the ability of our approach to factorize

large knowledge bases, we conducted various experiments on
both the YAGO 2 core ontology and on synthetic data. Some
statistics of the current version6 of the YAGO ontology are
listed in Table 2. Out of the 87 predicates that are included

YAGO 2 core ontology

Number of Entities 2.6 million
Number of Classes 340,000
Number of Predicates 87
Number of Known Facts 33 million

Table 2: YAGO 2 core statistics

in this knowledge base, we treat 38 predicates as entity-to-
entity relations, while the rest is handled as attributes. Fur-
thermore, we included the materialization of all rdf:type
triples and transitive rules, which can be done conveniently
via the YAGO conversion tools.7 This resulted in a total of
64 million triples. From this raw data we constructed a ten-
sor X of size 3000417×3000417×38 and an attribute matrix
D of size 3000417 × 1138407. D has been created by tok-
enizing and stemming attribute values of textual attributes,
such as rdfs:label, yago:hasPreferredMeaning etc. The
tensor X has approximately 41 million entries, while D has
around 35.4 million entries. It can be seen that both X and
D are very sparse. A tensor for the YAGO 2 core ontology
has 4.3 · 1014 possible entries (of which 2.4 · 1013 are valid
according to rdfs:range and rdfs:domain constraints), but
only 4 · 107 non-zero entries. Once a factorization has been
computed, our model is able to predict, without any addi-
tional training, the likelihood of any of the 4.3 ·1014 possible
triples in the YAGO 2 ontology.

In the following experiments, all algorithms have been im-
plemented in Python and NumPy, respectively, and were

5The operation ATA is not included, since it can be reused
from the update step of Rk
6Version 20110315 from http://yago-knowledge.org
7Version 20111027 from http://yago-knowledge.org
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Parameter Value Range
Min Max

Entities 1 · 104 1 · 106

Predicates 1 · 101 1 · 104

Facts 1 · 106 6 · 108

Rank 5 100

Type Number of entities

wordnet:person 884,261
wordnet:location 429,828
wordnet:movie 62,296

(b)

Figure 3: (a) Runtime experiments on synthetic data (b) Statistics for selected classes in YAGO 2 core

evaluated on a single Intel Core 2 Duo machine with two
2.5GHz cores and 4GB RAM, except where otherwise noted.

4.1 Large-Scale Prediction of Unknown Triples
A central requirement of an algorithm for large-scale learn-

ing on Semantic Web data is to scale well with the number of
entities, predicates and known facts in the data. Therefore,
to evaluate the scalability of our approach, we first con-
ducted experiments on synthetic data, where various sparse
datasets were created with different numbers of entities n,
numbers of predicates m, and nonzero values p. In each ex-
periment we varied exactly one of these parameters, while
keeping all other parameters fixed. To evaluate how well our
approach scales with regard to a particular parameter, we
computed a factorization of the synthetic data with r latent
components and recorded the average runtime per iteration.
Additionally we also evaluated the runtime with respect to
different values for r, while keeping n, m and p fixed. Fig-
ure 3 lists the value ranges that were used in the experiments
for each parameter as well as the runtime results. It can be
seen that RESCAL scales indeed linearly with respect to the
number of entities, the number of predicates and the num-
ber of known facts, while it scales superlinear with regard to
the latent components of the factorization. Even for large
parameter values such as 6 ·108 nonzero entries, the runtime
for a single iteration is still measured in seconds.
Given these very promising results in terms of runtime

scalability, the next objective in our experiments was to
evaluate the capabilities of RESCAL to predict unknown
triples in a large-scale setting. For this reason, we conducted
several link-prediction experiments on the entire YAGO 2
core ontology. The objective of these experiments was to
correctly predict links for the rdf:type predicate for vari-
ous higher level classes, namely wordnet:person, wordnet:-
location and wordnet:movie. The choice of these classes is
motivated by the fact that they occur on different levels in
the subclass hierarchy and are of different size. Some statis-
tics for these classes are available in Figure 3b. For each of

these classes we performed 5-fold stratified cross-validation
over all entities in the data in two different settings.

a) Only the rdf:type triples that include the class C that
should be predicted were removed from the test fold.
All other type triples, including subclasses of C, are still
present.

b) All rdf:type triples have been deleted in the test fold.

The objective in setting a) is unusual for Machine Learn-
ing, since obviously a high correlation exists between classes
and their subclasses. However, it is a very common Seman-
tic Web problem, as it corresponds to the materialization
of rdf:type triples, given an ontology. Setting b), on the
other hand is a very common Machine Learning problem, as
it corresponds to the classification of instances, given their
relations and attributes. Since there is a large skew in the
distribution of existing and non-existing triples, we report
the area under the precision-recall curve (AUC-PR) to eval-
uate the results, what is suitable for this setting [10].

Figure 4 shows the results of these experiments. It can be
seen that RESCAL learns a reasonable model in both set-
tings. The results for setting a) indicate that given enough
support in the data, RESCAL can predict triples that orig-
inate from transitive rules such as

∀xyz : classOf(x,y) ∧ subClassOf(y,z)⇒ classOf(x,z)

with high precision and recall. But the results for setting
b) are also very encouraging, since they are close to the re-
sults of setting a). Not surprisingly, to achieve good results
in setting b) it is necessary to train more complex models.
For instance, the results to predict wordnet:person in set-
ting a) were computed with r = 7, while setting b) required
r = 15. This is consistent with the higher degree of difficulty
for setting b). For persons and locations the factorization
was computed without attribute information. However, for
movies we performed an additional experiment, where we
added values of the predicate yago:hasWikipediaCategory

from the full YAGO ontology as attributes to the factor-
ization. The rationale behind this procedure was that this
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Figure 4: Link-prediction experiments for rdf:type

predicate provides a textual description for movies that usu-
ally includes the token “films”, e.g. “French comedy films”,
“1997 films” etc. It can be seen from the significantly im-
proved results that RESCAL can detect these regularities
by using the attribute extension.
Furthermore, we carried out general link prediction exper-

iments for all relation types in the YAGO 2 ontology. Due
to the enormous size of potential triples and the very unbal-
anced distribution of triples across predicates (e.g. rdf:-

type holds approximately 40 million triples, while yago:-

hasNeighor holds only around 600) we created a train/test-
split of the data, by randomly selecting 100 existing and
1000 non-existing triples for each predicate. Figure 4 shows
the area under the precision-recall curve for different num-
bers of latent components. Models for r = 50 and higher
have been computed on a machine with 64GB RAM, due to
memory requirements exceeding 4GB. The results support
the intuitive interpretation that abstract and general rela-
tions (e.g. rdf:type wordnet:person) can be ranked suc-
cessfully with models of relatively low complexity as they
fit nicely to a latent-variable model and have a significant
number of examples in the data. However, more detailed or
complex relations (e.g. yago:isMarriedTo) possibly need a
very large number of latent components.

4.2 Collective Learning on the Semantic Web
As previously stated, collective learning is an important

feature of an algorithm for learning on the Semantic Web,
due to the way data is modeled in RDF. To demonstrate col-
lective learning, we carried out a specifically designed link-
prediction experiment on YAGO, with the objective to pre-
dict links of the kind rdf:type wikicategory:<?>_writer,
where <?> can be any nationality such as French, American,
etc. Naturally, the classification of a person as a writer of a
particular nationality is dependent on the birthplace of the
writer in question. Unfortunately, the birthplace of a person
is usually not given as a country, for which a clear correla-
tion to the nationality of a person would exist, but as the
city the person was born in. However, the city usually has a
link, e.g. yago:isLocatedIn, to the corresponding country
(See Figure 5a for an example of this modeling). In order
to be able to predict the correct rdf:type triples from the
relations yago:wasBornIn and yago:isLocatedIn, it is nec-

essary for an algorithm to detect the correlations between
the type of a writer and the country of the writer’s birth-
place. Consequently, this is a collective learning problem.

To evaluate the performance of RESCAL on this task,
we compared it to algorithms that were previously used for
Machine Learning on Semantic Web data. CP [8] is a ten-
sor factorization that has been used in TripleRank [12] to
rank RDF data for faceted browsing. Moreover, we included
SUNS [17], a relational learning algorithm for large-scale
data which has also been applied to RDF data. However,
both of these algorithms have only limited collective learning
capabilities. We also included MLNs, where we manually8

specified the rule

wasBornIn(x,y) ∧ isLocatedIn(y,+z)⇒ type(x,+c)

and learned the weights for this rule via the Alchemy pack-
age.9 To create a confined setting, we extracted a sub-
graph of the YAGO ontology consisting only of American,
French, German and Japanese writers, their birthplaces and
their respective countries as well as the predicates yago:was-
BornIn, yago:isLocatedIn and rdf:type. Learning only on
this subgraph has the advantage that it is a very controlled
setting, i.e. a relational learning algorithm should only be
successful on this data when it can detect the correlation
between the rdf:type of a person and the country of the
person’s birthplace. The subgraph was constructed with
SPARQL queries such as

SELECT ?writer, ?birthPlace, ?location WHERE

{

?writer rdf:type wikicategory:French_writer .

?writer yago:wasBornIn ?birthPlace .

?birthPlace yago:isLocatedIn ?location

}

Converting the raw RDF data to a tensor representation,
resulted in a tensor of size 404 × 404 × 3. On this data
we performed 10-fold cross-validation where the objective
was to correctly predict the rdf:type relations. In each
iteration, all rdf:type triples were removed from the test

8Unfortunately, we were not able to get reasonable results
with structure learning for MLNs.
9+z and +y is Alchemy-specific syntax that replaces the
variable with all occurring constants
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Figure 5: (a) Collective learning example. (b) Results of 10-fold cross-validation on writers data. (c) Reachability-plot of
an OPTICS clustering on the IIMB data. “Valleys” in the plot indicate clusters, nested valleys correspond to the cluster
hierarchy.

data. Figure 5b shows the results of this experiment. It
can be seen that RESCAL is very successful in predicting
the correct rdf:type triples, while CP and SUNS struggle
to learn something meaningful on this data, what is due to
their missing collective learning ability.

4.3 Learning Taxonomies
In Section 3.3.3 we briefly described how RESCAL can

be used to learn taxonomies on Semantic Web data. To
evaluate the applicability of our approach, we conducted
experiments with the objective to rebuild an existing tax-
onomy as closely as possible in a fully unsupervised setting,
i.e. only from instance data. For this purpose we used the
large version of the IIMB 2010 benchmark provided by the
Ontology Alignment Evaluation Initiative,10 which contains
around 1400 instances of a movie domain. These instances
are organized in an ontology that consists of 5 distinct top-
level concepts, namely Budget, Creature, Film, Language,
and Location. The concepts Creature, Film and Location

are again subdivided into multiple concepts such as Person
and Character, Anime and Action Movie or Country and
City. In total there exist 80 concepts and the maximum
subclass-level is 3. A tensor representation of this data is of
size 1519×1519×35. We selected OPTICS [1] as the hierar-
chical clustering algorithm to work in the latent-component
space A. OPTICS is a density-based hierarchical cluster-
ing algorithm, which also provides an interpretable visual
representation of its results. An example of this representa-
tion is shown in Figure 5c. To evaluate the quality of our
clustering, we followed the procedure suggested in [30] and
assign that F-measure score to a particular concept that is
the highest for this concept out of all clusters. The idea be-
hind this approach is that there should exist one cluster for
each concept that is pure and holds most of this concept’s
instances. Table 3 shows the results of our evaluation, using
a RESCAL model with r = 10 and an OPTICS clustering
with minpts = 1. It can be seen that our approach achieves

10available from http://oaei.ontologymatching.org/
2010/im/index.html

Table 3: F-measure for selected concepts and weighted F-
measure for all concepts per subclass-level

Level 1 Level 2 Level 3

Locations 0.89 City 0.94 Capital 0.94

Films 1.0 Sci. Fiction 0.81 Director 0.81

Creature 0.96 Character 0.73 C. Creator 0.31

Budget 1.0 Person 0.97 Actor 0.58

Language 0.92 Country 0.59

All 0.958 All 0.76 All 0.79

good results throughout all levels, especially for top-level
concepts. One reason for this behaviour is that, on this
level, every concept is represented by a sufficient number of
instances, while e.g. some level 2 movie concepts include
only two or three instances and therefore are hard to rec-
ognize. Although more sophisticated taxonomy-extraction
methods could be applied, the results are encouraging since
they indicate that A provides a meaningful representation
for this task.

5. CONCLUSION AND FUTURE WORK
We have demonstrated that tensor factorization in form of

the RESCAL decomposition is a suitable relational learning
approach for the dyadic relational data of the Semantic Web
and showed that the presented approach can scale to large
knowledge bases. By exploiting the sparsity of LOD-type Se-
mantic Web data we were able to factorize the YAGO 2 core
ontology, consisting of millions of entities and known facts,
on a single desktop computer. Furthermore, we demon-
strated on YAGO 2 that the factorization is able to success-
fully predict unknown triples on a large scale and validated
its efficiency in collective learning.

While sparsity allows RESCAL to scale, it might also be-
come a problem, e.g., when a particular relation is under-
represented and only very complex models have a chance to
capture its regularities. Therefore, a possible line of future
research is to reduce the effective sparsity of a tensor repre-
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sentation by introducing typed relations to the factorization,
such that only those tensor entries Xijk are considered in the
factorization that are in compliance with the rdfs:range

and rdfs:domain constraints of predicate k. Furthermore,
determining good choices of regularization parameters via
cross-validation can be tedious on large-scale data. Efficient
methods to finding good parameter values, for instance scal-
able Bayesian methods such as [33], could provide a solution.
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