
In: G. Tesauro, D. S. Touretzky and T. K. Leen, eds., "Advances in
Neural Information Processing Systems 7", MIT Press, Cambridge MA,
1995.

Combining Estimators Using
Non-Constant Weighting Functions

Volker Tresp∗and Michiaki Taniguchi
Siemens AG, Central Research

Otto-Hahn-Ring 6
81730 München, Germany

Abstract

This paper discusses the linearly weighted combination of estima-
tors in which the weighting functions are dependent on the input.
We show that the weighting functions can be derived either by
evaluating the input dependent variance of each estimator or by
estimating how likely it is that a given estimator has seen data in
the region of the input space close to the input pattern. The latter
solution is closely related to the mixture of experts approach and we
show how learning rules for the mixture of experts can be derived
from the theory about learning with missing features. The pre-
sented approaches are modular since the weighting functions can
easily be modified (no retraining) if more estimators are added.
Furthermore, it is easy to incorporate estimators which were not
derived from data such as expert systems or algorithms.

1 Introduction

Instead of modeling the global dependency between input x ∈ <D and output y ∈ <
using a single estimator, it is often very useful to decompose a complex mapping

∗At the time of the research for this paper, a visiting researcher at the Center for
Biological and Computational Learning, MIT. Volker.Tresp@zfe.siemens.de

into simpler mappings in the form1

ŷ(x) =
1

n(x)

M∑

i=1

hi(x)NNi(x) =
M∑

i=1

gi(x)NNi(x) (1)

n(x) =
M∑

i=1

hi(x) hi(x) >= 0 gi(x) =
hi(x)
n(x)

.

The weighting functions hi(x) act as soft switches for the modules NNi(x). In the
mixture of experts (Jacobs et al., 1991) the decomposition is learned in an unsu-
pervised manner driven by the training data and the main goal is a system which
learns quickly. In other cases, the individual modules are trained individually and
then combined using Equation 1. We can distinguish two motivations: first, in the
work on averaging estimators (Perrone, 1993, Meir, 1994, Breiman, 1992) the mod-
ules are trained using identical data and the weighting functions are constant and,
in the simplest case, all equal to one. The goal is to achieve improved estimates
by averaging the errors of the individual modules. Second, a decomposition as de-
scribed in Equation 1 might represent some “natural” decomposition of the problem
leading to more efficient representation and training (Hampshire and Waibel, 1989).
A good example is a decomposition into analysis and action. hi(x) might be the
probability of disease i given the symptoms x, the latter consisting of a few dozen
variables. The amount of medication the patient should take given disease i on the
other hand — represented by the output of module NNi(x) — might only depend
on a few inputs such as weight, gender and age.2 Similarly, we might consider hi(x)
as the IF-part of the rule, evaluating the weight of the rule given x, and as NNi(x)
the conclusion or action which should be taken under rule i (compare Tresp, Hol-
latz and Ahmad, 1993). Equation 1 might also be the basis for biological models
considering for example the role of neural modulators in the brain. Nowlan and
Sejnowsky (1994) recently presented a biologically motivated filter selection model
for visual motion in which modules provide estimates of the direction and amount
of motion and weighting functions select the most reliable module.

In this paper we describe novel ways of designing the weighting functions. Intu-
itively, the weighting functions should represent the competence or the certainty of
a module, given the available information x. One possible measure is related to the
number of training data that a module has seen in the neighborhood of x. There-
fore, P̂ (x|i), which is an estimate of the distribution of the input data which were
used to train module i is an obvious candidate as weighting function. Alternatively,
the certainty a module assigns to its own prediction, represented by the inverse of
the variance 1/var(NNi(x)) is a plausible candidate for a weighting function. Both
approaches seem to be the flip-sides of the same coin, and indeed, we can show that
both approaches are extremes of a unified approach.

1The hat stands for an estimates value.
2Note, that we include the case that the weighting functions and the modules might

explicitly only depend on different subsets of x.

−1 0 1

−1

−0.5

0

0.5
(a)

−1 0 1

−1

−0.5

0

0.5
(b)

−1 0 1
0

10

20

30
(c)

−1 0 1
0

0.2

0.4

0.6

0.8

1
(e)

−1 0 1

−1

−0.5

0

0.5
(d)

−1 0 1

−1

−0.5

0

0.5
(f)

Figure 1: (a): Two data sets (1:*, 2:o) and the underlying function (continuous).
(b) The approximations of the two neural networks trained on the data sets (con-
tinuous: 1, dashed: 2). Note, that the approximation of a network is only reliable
in the regions of the input space in which it has “seen” data. (c) The weighting
functions for variance-based weighting. (d) The approximation using variance-based
weighting (continuous). The approximation is excellent, except to the very right.
(e) The weighting functions for density-based weighting (Gaussian mixtures ap-
proximation). (f) The approximation using density-based weighting (continuous).
In particular to the right, the extrapolation is better than in (d).

2 Variance-based Weighting

Here, we assume that the different modules NNi(x) were trained with different
data sets {(xi

k, yi
k)}Ki

k=1 but that they model identical input-output relationships
(see Figure 1 a,b). To give a concrete example, this would correspond to the case
that we trained two handwritten digit classifiers using different data sets and we
want to use both for classifying new data.

If the errors of the individual modules are uncorrelated and unbiased,3 the combined
estimator is also unbiased and has the smallest variance if we select the weighting
functions inversely proportional the the variance of the modules

hi(x) =
1

var(NNi(x))
. (2)

This can be shown using var(
∑M

i=1 gi(x)NNi(x)) =
∑M

i=1 g2
i (x)var(NNi(x)) and

using Lagrange multiplier to enforce the constraint that
∑

i gi(x) = 1. Intuitively,
3The errors are uncorrelated since the modules were trained with different data; corre-

lation and bias are discussed in Section 8.1.

Equation 2 says that a module which is uncertain about its own prediction should
also obtain a smaller weight. We estimate the variance from the training data as

var(NNi(x)) ≈ ∂NNi(x)T

∂w
H−1

i

∂NNi(x)
∂w

.

Hi is the Hessian, which can be approximated as (σ2 is the output-noise variance,
Tibshirani, 1994)

Hi ≈ 1
σ2

Ki∑

k=1

∂NNi(xi
k)

∂w

∂NNi(xi
k)

∂w

T

.

3 Density-based Weighting

In particular if the different modules were trained with data sets from different
regions of the input space, it might be a reasonable assumption that the different
modules represent different input-output relationships. In terms of our example,
this corresponds to the problem, that we have two handwritten digit classifiers, one
trained with American data and one with European data. If the classifiers are used
in an international setting, confusions are possible, since, for example, an American
seven might be confused with a European one. Formally, we introduce an additional
variable which is equal to zero if the writer is American and is equal to one if the
writer is European. During recall, we don’t know the state of that variable and
we are formally faced with the problem of estimation with missing inputs. From
previous work (Ahmad and Tresp, 1993) we know that we have to integrate over
the unknown input weighted by the conditional probability of the unknown input
given the known variables. In this case, this translates into Equation 1, where the
weighting function is

hi(x) = P (i|x) =
P (i, x)
P (x)

∝ P (x|i)P (i).

In our example, P (i|x) would estimate the probability that the writer is American
or European given the data.

Depending on the problem P (i|x) might be estimated in different ways. If x repre-
sents continuous variables, we use a mixture of Gaussians model

P̂ (x|i) =
∑

j

P ijG(x; cij ,Σij) P̂ (i) =
Ki∑
i Ki

(3)

where G(x; cij ,Σij) is our notation for a normal density centered at cij and with
covariance Σij .

Note that we have obtained a mixture of experts network with P̂ (i|x) as gating net-
work. A novel feature of our approach is that we maintain an estimate of the input
data distribution (Equation 3), which is not modeled in the original mixture of ex-
perts network. This is advantageous if we have training data which are not assigned

to a module (in the mixture of experts, no data are assigned) which corresponds
to training with missing inputs (the missing input is the missing assignment), for
which the solution is known (Tresp et al., 1994). If we use Gaussian mixtures to
approximate P (x|i), we can use generalized EM learning rules for adaptation. The
adaptation of the parameters in the “gating network” which models P̂ (x|i) is there-
fore somewhat simpler than in the original mixture of experts learning rules (see
Section 8.2).

4 Unified Approach

In reality, the modules will often represent different mappings, but these mappings
are not completely independent. Let’s assume that we have an excellent American
handwritten digit classifier but our European handwritten digit classifier is still very
poor, since we only had few training data. We might want to take into account the
results of the American classifier, even if we know that the writer was European.
Mathematically, we can introduce a coupling between the modules. Let’s assume
that the prediction of the i-th module NNi(x) = fi(x) + εi is a noisy version of the
true underlying relationship fi(x) and that εi is independent Gaussian noise with
variance var(NNi(x)). Furthermore, we assume that the true underlying functions
are coupled through a prior distribution (for simplicity we only assume two modules)

P (f1(x), f2(x)) ∝ exp(− 1
2varc

(f1(x) − f2(x))2).

We obtain as best estimates

f̂1(x) =
1

K(x)
[(var(NN2(x)) + varc) NN1(x) + var(NN1(x)) NN2(x)]

f̂2(x) =
1

K(x)
[var(NN2(x)) NN1(x) + (var(NN1(x)) + varc) NN2(x)]

where
K(x) = var(NN1(x)) + var(NN2(x)) + varc.

We use density-based weighting to combine the two estimates: ŷ(x) = P (1|x)f̂1(x)+
P (2|x)f̂2(x). Note, that if varc → ∞ (no coupling) we obtain the density-based
solution and for varc → 0 (the mappings are forced to be identical) we obtain the
variance-based solution. A generalization to more complex couplings can be found
in Section 8.2.1.

5 Experiments

We tested our approaches using the Boston housing data set (13 inputs, one continu-
ous output). The training data set consisted of 170 samples which were divided into
20 groups using k-means clustering. The clusters were then divided randomly into
two groups and two multi-layer perceptrons (MLP) were trained using those two

data sets. Table 1 shows that the performances of the individual networks are pretty
bad which indicates that both networks have only acquired local knowledge with
only limited extrapolation capability. Variance-based weighting gives considerably
better performance, although density-based weighting and the unified approach are
both slightly better. Considering the assumptions, variance-based weighting should
be superior since the underlying mappings are identical. One problem might be
that we assumed that the modules are unbiased which might not be true in regions
were a given module has seen no data.

Table 1: Generalization errors
NN1 NN2 variance-based density-based unified
0.6948 1.188 0.4821 0.4472 0.4235

6 Error-based Weightimg

In most learning tasks only one data set is given and the task is to obtain opti-
mal predictions. Perrone (1994) has shown that simply averaging the estimates
of a small number (i. e. 10) of neural network estimators trained on the same
training data set often gives better performance than the best estimator out of this
ensemble. Alternatively, bootstrap samples of the original data set can be used for
training (Breimann, personal communication). Instead of averaging, we propose
that Equation 1, where

hi(x) =
1

var(NNi(x)) + Res(NNi(x))

might give superior results (error-based weighting). Res(NNi(x)) stands for an
estimate of the input dependent residual squared error at x. As a simple approx-
imation, Res(NNi(x)) can be estimated by training a neural network with the
residual squared errors of NNi. Error-based weighting should be superior to sim-
ple averaging in particular if the estimators in the pool have different complexity.
A more complex system would obtain larger weights in regions where the map-
ping is complex, since an estimator which is locally too simple has a large residual
error, whereas in regions, where the mapping is simple, both estimators have suf-
ficient complexity, but the simpler one has less variance. In our experiments we
only tried networks with the same complexity. Preliminary results indicate that
variance-based weighting and error-based weighting are sometimes superior to sim-
ple averaging. The main reason seems to be that the local overfitting of a network
is reflected in a large variance near that location in input space. The overfitting
estimator therefore obtains a small weight in that region (compare the overfitting
of network 1 in Figure 1b near x = 0 and the small weight of network 1 close to
x = 0 in Figure 1c).

7 Conclusions

We have presented modular ways for combining estimators. The weighting functions
of each module can be determined independently of the other modules such that
additional modules can be added without retraining of the previous system. This
can be a useful feature in the context of the problem of catastrophic forgetting:
additional data can be used to train an additional module and the knowledge in the
remaining modules is preserved. Also note that estimators which are not derived
from data can be easily included if it is possible to estimate the input dependent
certainty or competence of that estimator.

Acknowledgements: Valuable discussions with David Cohn, Michael Duff and
Cesare Alippi are greatfully acknowledged. The first author would like to thank
the Center for Biological and Computational Learning (MIT) for providing and
excellent research environment during the summer of 1994.

8 Appendix

8.1 Variance-based Weighting: Correlated Errors and Bias

We maintain that
∑

i gi(x) = 1. In general (i.e. the modules have seen the same
data, or partially the same data), we cannot assume that the errors in the individual
modules are independent. Let the M×M matrix Ω(x) be the covariance between the
predictions of the modules NNi(x). With h(x) = (h1(x)....hM (x)T ,4 the optimal
weighting vector becomes

h(x) = Ω−1(x) u n(x) = uT Ω−1(x) u

where u is the M -dimensional vector of ones.

If the individual modules are biased (biasi(x) = ED(NNi(x)) − Ey|x(y|x)),5 we
form the M × M matrix B(x), with Bij(x) = biasi(x)biasj(x), and the minimum
variance solution is found for

h(x) = (Ω(x) + B(x))−1 u n(x) = uT (Ω(x) + B(x))−1 u.

8.2 Density-based Weighting: GEM-learning

Let’s assume a training pattern (xk, yk) which is not associated with a particular
module. If wi is a parameter in network NNi the error gradient becomes

∂errork

∂wi
= −(yk − NNi(xk)) P̂ (i|xk, yk)

∂NNi(xk)
∂wi

.

4()T stands for the transposed.
5E stands for the expected value; the expectation ED is taken with respect to all data

sets of the same size.

This equation can be derived from the solution to the problem of training with
missing features (here: the true i is unknown, see Tresp, Ahmad and Neuneier,
1994). This corresponds also to the M-step in a generalized EM algorithm, where
the E-step calculates

P̂ (i|xk, yk) =
P̂ (yk|xk, i)P̂ (xk|i)P̂ (i)

∑
i P̂ (yk|xk, i)P̂ (xk|i)P̂ (i)

P̂ (yk|xk, i) = G(yk;NNi(xk), σ2).

using the current parameters. The M-step in the “gating network” P̂ (x|i) is par-
ticularly simple using the well known EM-rules for Gaussian mixtures. Note, that
P̂ (module = i,mixture component : j|xk, yk) needs to be calculated.

8.2.1 Unified Approach: Correlated Errors and General Coupling

Let’s form the vectors NN(x) = (NN1(x), ...NNM (x))T and f(x) =
(f1(x), ..., fM (x))T . In a more general case, the prior coupling between the un-
derlying functions is described by

P (f(x)) = G(f(x); g(x),Σg(x))

where g(x) = (g1(x), ..., gM (x))T . Furthermore, in a more general case, the esti-
mates are not independent,

P (NN(x)|f(x)) = G(NN(x); f(x),ΣN (x)).

The minimum variance solution is now

f̂(x) = (Σ−1
N (x) + Σ−1

g (x))−1(Σ−1
N NN(x) + Σ−1

g g(x)).

The equations in Section 4 are special cases with M = 2, g(x) = 0, Σ−1
g (x) =

1/varcc × (1,−1)(1,−1)T , ΣN (x) = I (var(NN1(x)), var(NN2(x)))T (I is the 2D
matrix of ones).

References

Ahmad, S. and Tresp, V. (1993). Some Solutions to the Missing Feature Problem
in Vision. In S. J. Hanson, J. D. Cowan and C. L. Giles, (Eds.), Advances in Neural
Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann.

Breiman, L. (1992). Stacked Regression. Dept. of Statistics, Berkeley, TR No. 367.

Hampshire, J. and Waibel, A. (1989). The meta-pi network: Building Distributed
Knowledge Representations for Robust Pattern Recognition. TR CMU-CS-89-166,
CMU, PA.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J. and Hinton, J. E. (1991). Adaptive
Mixtures of Local Experts. Neural Computation, Vol. 3, pp. 79-87.

Meir, R. (1994). Bias, Variance and the Combination of Estimators: The Case of
Linear Least Squares. TR: Dept. of Electrical Engineering, Technion, Haifa.

Nowlan, S. J and Sejnowski, T. J. (1994). Filter Selection Model for Motion Seg-
mentation and Velocity Integration. J. Opt. Soc. Am. A, Vol. 11, No. 12, pp.
1-24.

Perrone, M. P. (1993). Improving Regression Estimates: Averaging Methods for
Variance Reduction with Extensions to General Convex Measure Optimization. PhD
thesis. Brown University.

Tibshirani, R. (1994). A Comparison of Some Error Estimates for Neural Network
Models. TR Department of Statistics, University of Toronto.

Tresp, V., Ahmad, S. and Neuneier, R. (1994). Training Neural Networks with
Deficient Data. In: Cowan, J. D., Tesauro, G., and Alspector, J., eds., Advances in
Neural Information Processing Systems 6, San Mateo, CA, Morgan Kaufman.

Tresp, V., Hollatz J. and Ahmad, S. (1993). Network Structuring and Training
Using Rule-based Knowledge. In S. J. Hanson, J. D. Cowan and C. L. Giles, (Eds.),
Advances in Neural Information Processing Systems 5, San Mateo, CA: Morgan
Kaufmann.

