
The Bayesian Committee
Support Vector Machine

Anton Schwaighofer1,2 and Volker Tresp2

1 TU Graz, Institute for Theoretical Computer Science
Inffeldgasse 16b, 8010 Graz, Austria

aschwaig@igi.tu-graz.ac.at

http://www.igi.tu-graz.ac.at/aschwaig/
2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6,

81739 München, Germany
{Anton.Schwaighofer.external,Volker.Tresp}@mchp.siemens.de

Abstract. Empirical evidence indicates that the training time for the
support vector machine (SVM) scales to the square of the number of
training data points. In this paper, we introduce the Bayesian committee
support vector machine (BC-SVM) and achieve an algorithm for training
the SVM which scales linearly in the number of training data points. We
verify the good performance of the BC-SVM using several data sets.

1 Introduction

Kernel-based systems such as the support vector machine (SVM) and Gaussian
processes (GP) are powerful and currently very popular approaches to supervised
learning [1]. Unfortunately, there are at least three problems when one tries to
scale up these systems to large data sets. First, training time increases drastically
with the number of training data points, second, memory requirements increase
with data set size and third, prediction time is proportional to the number of
kernels and the latter is equal to (or at least increases with) the number of
training data points.

One approach to scale up kernel systems to large data sets is the Bayesian
committee machine (BCM [6]). In the BCM the data set is divided up into M sets
of approximately the same size and M models are developed on the individual
data sets. The predictions of the individual models are combined using a weight-
ing scheme which is derived from a Bayesian perspective. The computational
complexity of the BCM scales linearly in the number of training data points.
The BCM was developed in the context of Gaussian process regression (GPR)
and was later applied to generalized Gaussian processes regression (GGPR).
GGPR uses measurement processes derived from the exponential family of dis-
tributions and can be applied to classification and the prediction of counts and
lifetimes.

In this paper we apply the BCM approximation to the support vector machine
(SVM) in form of the Bayesian committee support vector machine (BC-SVM).

The SVM is a kernel-based classifier which is derived from VC learning theory [1]
and minimizes a bound on the generalization error. A particular property of the
SVM is that it achieves sparse solutions, i.e. many kernel weights are equal to
zero. The basis for the applicability of the BCM to the SVM was made possible
by a recent probabilistic interpretation of the SVM by Sollich [4].

The paper is organized as follows. In the next sections we will review Gaussian
process regression, the BCM and the SVM. In Section 5 we will derive the BC-
SVM. In Section 6 we present experimental results and in Section 7 we present
conclusions.

2 Gaussian Process Regression (GPR)

In contrast to the usual parameterized approach to regression, in Gaussian pro-
cess regression we specify the prior model directly in function space. In par-
ticular we assume that a priori f is Gaussian distributed (in fact it would be
an infinite-dimensional Gaussian) with zero mean and a covariance K(x1, x2) =
cov(f(x1), f(x2)), where the experimenter has to specify the covariance function.

We assume that we can only measure a noisy version y(x) = f(x) + ε(x) of
the underlying function f , where ε(x) is independent Gaussian distributed noise
with zero mean and variance σ2

ψ.
The goal is now to predict the functional values fq = (fq

1 , . . . , fq
NQ

)′ at
a set of NQ test or query points based on a set of N training data D =
{(x1, y1), . . . (xN , yN)}. Let Ψmm = σ2

ψI be the noise variance of the targets
of the measurements, where I is the unit matrix. Furthermore, Σmm is the co-
variance matrix of the functional values at the training data points, Σqq is the
covariance matrix at the query points and Σqm is the covariance matrix between
training points and the query points.

Under these assumptions the conditional density of the response variables
at the query points is Gaussian distributed with mean E(fq|D) and covariance
cov(fq|D), given by

E(fq|D) = Σqm(Ψmm + Σmm)−1ym (1)
cov(fq|D) = Σqq − Σqm (Ψmm + Σmm)−1 (Σqm)′. (2)

Note, that following Eq. 1, the estimated function at input x becomes

f̂(x) =
N∑

i=1

wiK(x, xi). (3)

where w = (Ψmm + Σmm)−1ym. That is, the prediction of the GPR system is a
weighted combination of kernels on the training data points.

3 The Bayesian Committee Machine Applied to GPR

The calculation of the optimal predictions at the query points (Eq. 1) requires
the inversion of an N ×N matrix and therefore scales to the third power of the

number of training data points. As a consequence, GPR is limited to problems
up to may be 1000 training data points. In the Bayesian Committee Machine
(BCM, [6]), the data are partitioned into M data sets D = {D1, . . . , DM} (of
typically approximately same size) and M GPR systems are trained on the indi-
vidual data sets Di. When applied to a set of query points, each of the M GPR
systems outputs a prediction E(fq|Di) together with covariance cov(fq|Di), cal-
culated employing GPR formulas Equations 1 and 2.

The BCM combines the M estimates and calculates an approximation to the
expected values Ê(fq|D) of the functional values at the query points as

Ê(fq|D) = CBCM
−1

M∑
i=1

cov(fq|Di)−1E(fq|Di) (4)

CBCM = ĉov(fq|D)−1 = −(M − 1)(Σqq)−1 +
M∑
i=1

cov(fq|Di)−1. (5)

We recognize that the prediction of each GPR system i is weighted by the inverse
covariance of its prediction. In [6] it was shown that the BCM approximation
becomes equal to the correct expected value when the number of query points
is equal to the effective number of parameters of the kernel system. If we set
N/M = NQ (i.e. the number of data points in each module is equal to the number
of query points which is a typical choice) then the computational complexity of
the BCM scales as O(N × N2

Q), i.e. linear in the training data set size.

4 The Support Vector Machine (SVM)

The SVM is typically formulated as a linear classifier which is applied to a high-
dimensional feature space using the kernel transformation. The SVM takes on
the form of a kernel system as in Eq. 3 and a new pattern is classified according
to the sign of f̂(x) + b where b is a constant. The optimal weight vector w is
found by minimizing the cost function

cost =
1
2
w′Σmmw +

C

2

N∑
i=1

[(1 − yi(f(xi) + b))+]α .

Here, y ∈ {−1, 1} is the class label and, as before, (Σmm)ij = K(xi, xj) is the
kernel matrix. The operation ()+ sets all negative values equal to zero and C is
a constant that determines to what degree a violation of the margin constraints
is penalized. In most applications α = 1 has been used (1-norm soft margin) but
α = 2 (2-norm soft margin) is also a common choice [1].

The state of the art optimization routines (SMO, SVMlight [1]) scale approx-
imately O(N2), which limits the applicability of the SVM to data sets up to a
few 10000 training data points.

Sollich [4] has shown how the SVM can be formulated in the context of
Gaussian processes. As in GPR, we assume that the function is derived from an

infinite dimensional prior Gaussian distribution. In the SVM, we use a different
measurement process1. Instead of assuming Gaussian measurement noise, we set

P (y|f(x)) ∝ exp
(
−C

2
[(1 − y(f(x) + b))+]α

)
.

The cost function that is minimized during SVM training can then be interpreted
as the negative log of the posterior probability − log P (fm|D) and becomes

− log P (fm|D) =
1
2
(fm)′(Σmm)−1fm +

C

2

N∑
i=1

[(1 − yi(f(xi) + b))+]α . (6)

Here, fm is the vector of SVM outputs f(xi) at the training data points xi.

5 The Bayesian Committee Support Vector Machine
(BC-SVM)

For deriving the BC-SVM, we assume that the posterior density P (fm|D) can
be approximated by a Gaussian density (Laplace approximation). The mean of
the Gaussian corresponds to the prediction of the SVM at these points and can
be calculated using Eq. 3. The covariance matrix is derived from the Hessian
matrix of the cost function. We make use of Sollich’s re-formulation of the SVM
cost function − log P (fm|D) (Eq. 6).

Note, that the SVM cost function with α = 1 is non-differentiable at the
points with 1 − yf(x) = 0. This is particularly unpleasant since the points
with the property 1 − yf(x) = 0 are the support vectors. Sollich [4] proposes a
Gaussian approximation in this case but we experienced instabilities when we
used this approximation. For this reason, we used α = 2 in our experiments.
Here, the second derivative of the likelihood term is equal to C for the support
vectors and is 0 otherwise.
Computing the BC-SVM approximation thus consists of the following steps:

1. Train SVM module i on partition Di of the training data, using some stan-
dard SVM training algorithm.

2. The SVM outputs at the query points, as given by Eq. 3, replace E(fq|Di)
in Eq. 4.

3. Compute the Hessian matrix H of the cost function Eq. 6 evaluated at the
training points. By analogy to GPR, we calculate cov(fq|Di) (Eq. 2) by
identifying H = (Σmm)−1 + (Ψmm)−1.

4. Use the predictions and their covariances cov(fq|Di) of all modules in the
BCM (Eq. 4) to obtain the prediction of the BC-SVM.

1 Properly normalizing the conditional probability density is somewhat tricky and is
discussed in detail in [4].

For the BC-SVM Eq. 2 further simplifies such that the covariances are de-
fined only for the support vectors: Σmm contains the covariances between only
the support vectors, Σqm contains the covariances between the support vectors
and the query points, and Ψmm = 1

C I where I is the unit matrix with the
dimensionality of the number of support vectors.

All 2-norm SVMs have been trained using adapted versions of the decompo-
sition method and working set selection in the style of SVMlight, as proposed by
Joachims [2].

6 Experiments

We demonstrate the performance of the BC-SVM in experiments on four artificial
data sets (with different levels of noise) and on four real world data sets.

The ART data sets were generated by randomly drawing d = 5 dimensional
input points uniformly from [−1, 1]d, using them as inputs to a map defined by
5 normalized Gaussian basis functions, and finally adding independent Gaussian
noise with variance σ2

ψ to the map. The assigned class corresponds to the sign
of the generated outputs. In this way, the degree of overlap between classes can
be influenced by varying σ2

ψ. (This is the same data set as used in [7], see the
reference for a detailed description.)

The CHECKER data set is sampled uniformly from a 4 × 4 checkerboard
grid on [0, 1] × [0, 1]. CHECKER is often used to demonstrate highly complex
decision surfaces. Note that data sets CHECKER and ART with σψ = 0 have
non-overlapping classes.

Table 1 shows test set errors for different classification methods on those data
sets. Shown are results for an SVM trained on the whole of the training data and
for BC-SVMs with different module and query set size. It can be seen that the
BC-SVM, even with a small module size such as 100, performs comparable to a
full SVM on all data sets with noise (ART with σψ > 0). For the noise free sets
CHECKER and ART with σψ = 0, a larger module size is required to obtain a
performance that is comparable with the full SVM.

The evolution of the test set error, as the number of training points (and thus
the number of modules in the BC-SVM) increases, is shown in Figure 1 for ART
σψ = 0.1. The graph furthermore shows that the combination scheme employed
by the BC-SVM performs significantly better than averaging the predictions of
the individual modules.

The performance of the BC-SVM shows up more clearly in Table 2, where
the results for four real world data sets are given. For the three smaller data sets
PIMA, BUPA and WAVEFORM, the BC-SVM performs comparable to a full
SVM and no statistically significant difference in performance can be seen. For
the large ADULT data set, the BC-SVM has a slightly higher error rate than
the full SVM, yet still performs excellently.

For the ADULT data set we have also logged the training time. Training
the BC-SVM takes about 3 minutes, while training the full SVM lasts a few
hours. Both SVM and BC-SVM have been implemented in Matlab. (Comparing

Table 1. BC-SVM on 4 artificial data sets. Shown is the number of input dimensions
d, the number of training examples N , and the average test set error for different
classification methods. BC-SVM(i, j) uses a module size i with query set size j. All
test set errors have been computed on independent 10000 point test sets.

ART σψ = 0 ART σψ = 0.1 ART σψ = 0.5 CHECKER

d 5 5 5 2
N 2000 2000 2000 5000
SVM 2.58% 7.25% 19.32% 1.26%
BC-SVM(100,200) 3.30% 7.87% 19.75% 2.67%
BC-SVM(200,200) 3.54% 7.44% 19.54% 2.65%
BC-SVM(500,200) — — — 1.82%

Table 2. BC-SVM on 3 real-world data sets. Shown is the number of input dimensions
d, the number of training examples N , and the average test set error for different
classification methods. For BUPA, PIMA and WAVEFORM, test set errors have been
computed using 7fold cross-validation, and are given together with a 95% confidence
interval. The results for ADULT are on an independent test set of 16281 points.

BUPA PIMA WAVEFORM ADULT

d 6 8 21 124
N 345 700 2000 32561
SVM 27.7 ± 2.7% 24.3 ± 2.7% 8.33 ± 0.99% 14.77%
BC-SVM(50,50) 27.1 ± 3.7% 24.4 ± 2.9% 8.33 ± 0.89% —
BC-SVM(100,100) 27.4 ± 3.9% 25.7 ± 2.6% 8.94 ± 1.5% 16.88%
BC-SVM(200,200) — — 8.66 ± 0.98% 15.76%

the BC-SVM runtime directly with methods such as SMO and SVMlight would
require a C/C++ implementation.)

It should be mentioned that predictions of the BC-SVM on test data are
more time consuming than predictions of a standard SVM. This results from
the matrix operations in the combination scheme (Eq. 4), and from the higher
total number of support vectors in the BC-SVM. The modules in a BC-SVM,
trained on small portions of the data, can not exploit sparseness as efficiently as
an SVM that has been trained on the full data.

7 Conclusions

We have shown a principled way of scaling support vector machines to large data
sets by training SVMs on small subsets of the training data and combining their
predictions through a Bayesian scheme. The module size in this BC-SVM is small
enough that they can be trained with off-the-shelf quadratic optimizers without
the necessity for highly optimised SVM training methods (decomposition, SMO,
etc). We found the predictions of the BC-SVMs to be comparable with standard
SVMs trained on the full data.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
5

6

7

8

9

10

11

Training set size N

T
es

t s
et

 e
rr

or
 (

%
)

Fig. 1. Artificial data with noise σψ = 0.1: Test set error of SVM compared to BC-
SVM(200,200) as a function of the number of training points N . The test set errors
of the SVM’s, trained on various training set sizes, are shown as circles. The solid line
is the error of the BC-SVM, together with (two-sided) 95% confidence intervals. The
BC-SVM does not perform significantly worse than the full SVM. In particular, the
BC-SVM clearly outperforms a combination scheme that averages the predictions of
the BC-SVM modules (shown dashed).

An interesting direction for further work would be to apply the BCM to
relevance vector machines (RVM [5]). The RVM uses a probabilistic approach
to obtain a sparse solution of a kernel system. So far, the RVM idea is lacking a
method for scaling up to large data sets, since decomposition methods are not
applicable.

Acknowledgements AS gratefully acknowledges support through an Ernst-
von-Siemens scholarship.

References

1. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines. Cambridge University
Press, 2000

2. Joachims, T.: Making Large-scale Support Vector Machine Learning Practical. In:
Schölkopf, B., Burges, C.J., Smola, A.J. (eds.), Advances in Kernel Methods – Sup-
port Vector Learning. MIT Press, 1998 pages 169–184

3. Solla, S.A., Leen, T.K., Müller, K.R. (eds.): Advances in Neural Information Pro-
cessing Systems 12. MIT Press, 2000

4. Sollich, P.: Probabilistic Methods for Support Vector Machines. In: Solla et al. [3],
pages 349–355, 2000

5. Tipping, M.E.: The Relevance Vector Machine. In: Solla et al. [3], 2000
6. Tresp, V.: A Bayesian Committee Machine. Neural Computation 12 (2000) 2719–

2741
7. Tresp, V.: The Generalized Bayesian Committee Machine. In: Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. Boston, MA USA, 2000

