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Abstract. An increasing amount of data is becoming available in the
form of large triple stores, with the Semantic Web’s linked open data
cloud (LOD) as one of the most prominent examples. Data quality and
completeness are key issues in many community-generated data stores,
like LOD, which motivates probabilistic and statistical approaches to
data representation, reasoning and querying. In this paper we address the
issue from the perspective of probabilistic databases, which account for
uncertainty in the data via a probability distribution over all database
instances. We obtain a highly compressed representation using the re-
cently developed RESCAL approach and demonstrate experimentally
that efficient querying can be obtained by exploiting inherent features of
RESCAL via sub-query approximations of deterministic views.
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1 Introduction

The rapidly growing Web of Data, e.g., as presented by the Semantic Web’s
linked open data cloud (LOD), is providing an increasing amount of data in
form of large triple databases, also known as triple stores. However, the LOD
cloud includes many sources with varying reliability and to correctly account
for data veracity remains a big challenge. To address this issue, reasoning with
inconsistent and uncertain ontologies has recently emerged as a research field of
its own [6, 31, 4, 9, 3, 15]. In this paper we approach the veracity issue from the
perspective of probabilistic databases (PDB), which consider multiple possible
occurrences of a database via a possible worlds semantics and account for un-
certainty in the data by assigning a probability distribution over all database
instances [27]. As such, querying PDBs has a clear interpretation as generaliza-
tions of deterministic relational database queries.

When applying PDBs to large triple stores various key challenges need to be
addressed. First, consider storage requirements. A common assumption in PDBs
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is tuple independence, or in our case triple independence, which requires a repre-
sentation of each triple’s uncertainty. Unless default values are used, representing
the individual uncertainty levels can lead to huge storage requirements.

Second, there is the question of how the triple uncertainty is quantified and
where it is specified. In PDBs one typically assumes that the data uncertainty
is specified by the application, e.g., one assumes given measurements of uncer-
tainty. However, in the Web of Data such information is typically not available.
Rather the Web of Data is incomplete and contains incorrect information, as
triples are missing and existing triples can be false. The third issue concerns
probabilistically correct and efficient querying. Although individual triples are
assumed to be independent, complex queries introduce dependencies such that
correct query answering becomes, in the worst case, intractable.

We address all three issues by exploiting the recently developed RESCAL ap-
proach [19], which computes a memory-efficient low-rank tensor representation
of a triple store from which probabilities for individual triples can be derived
easily without materializing the whole probabilistic representation of the triple
store. These probabilities are meaningful in as much as the underlying data gen-
eration process (which we explore through the factorization) is sensible for the
particular triple store; experimentally it has been shown that this is the case,
e.g., for significant parts of the LOD [20]. While the RESCAL model alone al-
lows to query the probability of individual ground triples, more complex queries,
which generally might contain complex dependencies between ground triples
throughout the complete PDB, remain a major challenge. When restricting the
allowed queries to so-called safe queries, extensional query evaluation can pro-
vide answers with polynomial time complexity [27]. Unfortunately, polynomial
time complexity does not necessarily imply acceptable query time. During query
evaluation it might be necessary to materialize sub-queries, which often produce
large (dense) views and as such have high computational and high memory com-
plexity. Here, we propose a new method for extensional query evaluation (after
factorization) that avoids the expensive materialization of dense database views
by exploiting the factorized low-rank representation of a triple store computed
by RESCAL. The idea is to first materialize the sub-query in the initial deter-
ministic representation of the triple store (that can be efficiently constructed and
is generally sparse) and to then derive a low-rank approximation of that view
using fast RESCAL updates, which then produces the probabilistic view.

The paper is organized as follows: In the next section we discuss related
work. Section 3 reviews PDBs and Section 4 describes the RESCAL approach.
Section 5 contains the main contribution of the paper and addresses the querying
of a factorized probabilistic triple databases. Section 6 describes our experimental
results and Section 7 contains our conclusions.

2 Related Work

Probabilistic databases (PDB) have gained much interest in recent years and
an overview over the state of the art is provided by [27]. Important ongoing
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research projects include the MayBMS project [10] at Cornell University, the
MystiQ project [2] at the University of Washington, the Orion project [26] at
the Purdue University, and the Trio project [16] at the Stanford University. The
idea of materialized views on PDBs has been developed in [5], where it was
proposed to materialize probabilistic views to be used for query answering at
runtime.

Uncertainty in Semantic Web ontologies has been addressed in BayesOWL [6]
and OntoBayes [31]. Furthermore, PR-OWL [4] is a Bayesian Ontology Language
for the Semantic Web. The link between PDBs, Description Logic and Semantic
Web data structures has been explored by [9, 3, 15]. In contrast to these ap-
proaches, we start with a deterministic triple store and then derive probabilities
via the factorization. Common to all these approaches is the challenge of efficient
querying.

In our work we perform a probabilistic ranking of candidate query answers
as done by the top-k querying approaches [7, 21, 25], however without pruning
of low-confidence answers. In these top-k querying approaches the computation
of exact probabilities for the potential top-k answers are avoided by using lower
and upper bounds for the corresponding marginal probabilities. Unfortunately,
none of these approaches, apart from [7], can avoid extensive materializations in
finding answer candidates [28].

Tensors have been applied to Web analysis in [12] and to ranking predictions
in the Semantic Web in [8]. [23] applied tensor models to rating predictions.
Using factorization approaches to predict ground atoms was pioneered in [29];
[19], [30], [1], and [11] applied tensor models for this task, where [19] introduced
the RESCAL model. [24] applied matrix factorization for relation extraction in
universal schemas.

In [20] the YAGO ontology was factorized and meaningful predictions of
simple triples in selected subgroups of YAGO were derived through the recon-
struction from the low rank representation of the triple store. However, in these
papers querying was limited to the evaluation of independent ground triples.
Here, we study the significantly more difficult problem of complex queries on
predicted triple confidence values (including existentially quantified variables).
Thereby we realize extensional query evaluation on safe queries, which can induce
complex dependencies between individual predicted triple probabilities through-
out the database. In particular, we are concerned with how these queries can be
executed efficiently, without the need for extensive materialization of probability
tables, by exploiting the factorized representation during querying.

3 Probabilistic Databases

3.1 Semantics

Probabilistic databases (PDB) have been developed to extend database tech-
nologies to handle uncertain data. A general overview is provided by [27]. PDBs
build on the concept of incomplete databases, i.e. databases that are allowed to
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be in one of multiple states (worlds): Given an active domain ADom of constants
(resources in RDF) each world contains a subset of all possible ground atoms
(triples), formed by the elements of ADom and the predicates in the database.
A PDB then assigns a probability distribution to all possible worlds W ∈ W,
where W is the set of all worlds under consideration. More precisely, given an
active domain ADom of constants or resources in terms of a RDF framework,
each world contains a subset of all possible ground atoms (triples), formed by the
elements of ADom and the predicates. A PDB is an incomplete database where,
furthermore, a probability distribution is assigned to the possible worlds. In the
following, we adopt the common assumption of PDBs that the probabilities for
all ground atoms are mutually independent (i.e., tuple independence).

3.2 Querying on Probabilistic Databases

Query evaluation in PDBs remains a major challenge. In particular, scalability to
large domains is significantly harder to achieve when compared to deterministic
databases.

Of interest here is the possible answer semantics which calculates the prob-
ability that a given tuple t is a possible answer to a query Q in a world W ∈W
of a PDB D. For the marginal probability over all possible worlds, we get

P (t ∈ Q) =
∑

W∈W:t∈QW

P (W )

where QW is the query with respect to one possible world of D.
An important concept in query evaluation is the lineage ΦD

Q of a possible
answer tuple t to Q with respect to D. The lineage of a possible output tuple to
a query is a propositional formula over tuple states in the database, which says
which input tuples must be present in order for the query to return the particular
output. The concept of lineage allows a reduction of the query evaluation problem
to the evaluation of propositional formulas. For queries involving many variables
the lineage can become very complex but can still be derived in polynomial time
(with the size of the database).4

In intensional query evaluation, probabilistic inference is performed over the
lineage of all possible answers to a query Q. Every relational query can be evalu-
ated this way, but the data complexity depends dramatically on the query being
evaluated, and can be hard for #P. Thus it is in general advantageous to avoid
the evaluation of the lineage.

In contrast, extensional query evaluation is concerned with queries where
the entire probabilistic inference can be computed in a database engine and
thus, can be processed as effectively as the evaluation of standard SQL queries.
Relational queries that can be evaluated this way are called safe queries. If the
extensional query plan does compute the output probabilities correctly for any
input database, then it is called a safe query plan.

4 For a more detailed explanation on the concept of lineage we refer to [27, Chp.2].
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In this paper we focus on queries that allow an extensional query evaluation,
as discussed next.

3.3 Extensional Query Evaluation

Extensional query evaluation is only dependent on the query expression itself
and the lineage does not need to be computed. During the evaluation process,
several rules are applied to the query in order to divide it into smaller and easier
sub-queries until it reduces to ground tuples with elementary probability val-
ues. Queries that can be completely simplified to ground tuples with extensional
evaluation rules are safe, in the sense mentioned above. Extensional query eval-
uation can be implemented via the application of six rules [27]. In the following
we will briefly describe three of those rules relevant throughout this paper.

Consider a query that can be written as a conjunction of two simpler queries

Q = Q1 ∧Q2.

If one can guarantee that the sub-queries are independent probabilistic events,
one can write

P (Q1 ∧Q2) = P (Q1) · P (Q2). (independent-join rule)

More formally one needs the condition of a syntactical independence between Q1

and Q2: Two queries Q1 and Q2 are syntactically independent if no two relational
atoms unify, which means that it is not possible that exactly the same ground
tuples, under any assignments of constants, can occur in both sub-queries. With
syntactical independence we also get

P (Q1 ∨Q2) = 1− (1− P (Q1)) · (1− P (Q2)). (independent-union rule)

Further for queries of the form ∃x.Q we can use the independent-project rule

P (∃x.Q) = 1−
∏

b∈ADom

(1− P (Q[b/x])). (1)

This rule can always be applied if x is a separator variable.5 As an example,
consider that we want to know the probability that Jack is born in Rome and
that he likes someone who is a child of Albert Einstein (AE). This query can be
written as a conjunction of two sub-queries Q1 and Q2,

Q1(x, t) : − bornIn(x, t)

Q2(x, z) : − ∃y.(likes(x, y), childOf(y, z))

with x = Jack, t = Rome and z = AE. Q1 asks if Jack is born in Rome and
Q2 if Jack likes somebody who is a child of Albert Einstein. By exploiting the

5 x is a separator variable if it occurs in all atoms in Q and if in the case that atoms
unify, x occurs at a common position. Two atoms unify if they can be made identical
by an assignment of constants.
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Fig. 1. RESCAL model for binary relations

independent join rule on Q1 and Q2 and the independent project rule on Q2 this
query can be calculated as,

P (Q(x = Jack, t = Rome, z = AE) = P (bornIn(Jack,Rome))

×
(

1−
∏

b∈ADom

[1− P (likes(Jack, b)) · P ((childOf(b,AE))]

)
.

Note that since a person can like many other persons the likes atoms in Q2 are
not mutually exclusive what induces a complex expression that is not simply the
sum or the product or probabilities.

4 RESCAL

In PDBs one typically assumes that the data uncertainty is specified by the
application. Although there are efforts towards uncertainty management for the
Web of Data, currently such information not widely available. Rather the Web
of Data is incomplete, i.e., many triples are missing, and contains incorrect in-
formation, i.e., existing triples are false. To overcome this problem, we employ a
probabilistic model of the triple database – i.e. the recently developed RESCAL
approach – and derive data uncertainty from the agreement of the data with
this model. RESCAL relies on a specific factorization of a third-order adjacency
tensor from which triple probabilities can be derived. In addition, RESCAL
computes a highly compressed representation of the PDB, reducing the memory
footprint dramatically. The latter point is of particular interest, since PDBs can
be dense.

4.1 Notation

To describe RESCAL, we need to introduce some notation. We consider a
database as a set of M relations {rk}Mk=1. A relation is a table with attributes
as columns and subject-object entity pairs Ez = (ei, ej) as rows. If rk is a re-
lation, then rk(·) is the corresponding predicate. A predicate is a function that
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maps a tuple to true (or one), if the tuple is part of the relation, and to false
(or zero), otherwise. A predicate applied to a particular tuple rk(Ez) is called a
ground atom. A mapping of all possible tuples for all predicates to true or false,
i.e., the assignment of true or false to all ground atoms, defines a world W (see
Section 3). We now assume the following parameterization for a possible world,

P (W |Θ) =
∏
k,z

P (rk(Ez)|θk,Ez
(Θ)). (2)

Here, Θ is a set of model parameters and θk,Ez
(Θ) is a scalar that is a function

of the parameters. As it is common in probabilistic databases, Equation (2)
assumes that all ground atoms are independent given the model parameters.

4.2 Parameterization

RESCAL [19] is a latent variable method for learning from multi-relational data
where Equation (2) is parametrized as

θk,(ei,ej) =

r∑
l1=1

r∑
l2=1

Rkl1,l2
ai,l1aj,l2 = aTi Rkaj . (3)

Thus in RESCAL each entity ei is assigned a vector of r latent variables ai
and the matrix Rk describes how these latent variables interact for a particular
relation.

Note that the parameters Θ = {{ai}ni=1, {Rk}mk=1} are coupled via the unique
representation of the entities, what permits the global exchange of information
across different relations and across subject/object-occurrences of entities. Here,
n is the number of entities and m is the number of relation types. This property
is also referred to as collective learning.

4.3 Cost Functions

In RESCAL, one uses a least-squares penalty on the parameters (implying a
Gaussian prior distribution) and uses the cost function∑

k,Ez

lossk,Ez + λA‖A‖2F + λR
∑
k

‖Rk‖2F

where A is the matrix of latent factors with (A)i,j = ai,j and λA ≥ 0 and
λR ≥ 0 are hyperparameters for the regularization. ‖ · ‖F is the Frobenius norm.
For the loss function there are several options. An appropriate choice for the
conditional probability in Equation (2) would be a Bernoulli distribution and
we would obtain lossk,Ez = −rk(Ez) log θk,Ez − (1 − rk(Ez))(1 − θk,Ez ). After
training, we can interpret θk,Ez ≈ P (rk(Ez) = 1|θk,Ez ). Alternatively, one can
use a least-squared loss

lossk,Ez
= (rk(Ez)− θk,Ez

)2
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with the same interpretation of θk,Ez . A drawback is that we cannot guarantee
that predicted values are nonnegative and upper bounded by one. To overcome
this issue, we employ a post-processing step of the form,

θ̂Bz = sigε(θ
G
z ) (4)

where θGz is the parameter derived from the Gaussian model and θ̂Bz would be
an estimate for the corresponding Bernoulli parameter. The precise definition of
sigε(θ

G
z ) can be found in the Appendix. Alternatively, a form of Platt scaling

can be used to define sigε(θ
G
z ) [22].

In our work we employ the least squares cost function since then the highly
efficient alternating least-squares (ALS) updates can be employed that exploit
data sparsity [19]. RESCAL has been scaled up to work with several million
entities and close to 100 relation types. In contrast, with the Bernoulli cost
function it would not be possible to exploit the sparsity of the data efficiently:
gradient-based methods for the Bernoulli cost function would require to compute
the dense tensor ARkA

T explicitly, what is both slow and impractical [18] and
pattern-based approaches (such as stochastic gradient descent) have not proven
to be effective with a Bernoulli cost function.

4.4 Tensor Factorization

Note, that in Equation (3) we need to optimize the latent entity representations
ai and the relation-specific Rk matrices. This can be done by first factorizing an
adjacency tensor X ∈ {0, 1}n×n×m whose entries xijk correspond to all possible
ground atoms over n entities and m different relation types. In particular, the
entries of X are set to one, if the ground atom rk(Ez) exists and to zero otherwise.
Figure 1 illustrates the tensor factorization.

5 Querying Factorized Probabilistic Databases

We will describe now how complex queries on PDBs can be answered efficiently
via the RESCAL model when the queries are restricted to ∃x.Q-type safe queries.

A naive approach would be to use the triple probabilities as calculated by
the RESCAL model in the extensional query evaluation rules,

P (likes(Jack, Jane)) = sigε(a
T
JackRlikesaJane)

where sigε is defined in Equation (4). However, this would not remove the compu-
tational complexity of the evaluation and would computationally be demanding
for any reasonably sized triple store. A probabilistic database is not sparse in
general: e.g., the evaluation of a query the examples used in Section 3.3 requires
on the order of |ADom| evaluations of the RESCAL model. The complexity
is mainly introduced by the existentially quantified query variables and their
product-aggregation in the independent-project rule (Equation (1)). Assuming
further that we are not only interested in the probability with x = Jack but
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in a probabilistic ranking of all persons in the database, the total costs become
already quadratic in |ADom|.

The key idea is to approximate safe sub-queries of the type ∃x.Q by employ-
ing the RESCAL tensor factorization model. Through this approach, we avoid
costly evaluations of sub-queries and additionally construct materialized views
that have a memory efficient factorized representation. To illustrate the pro-
posed approach, consider the query example from Section 3.3. This query can
be subdivided into two parts, Q(x, t, z) = Q1(x, t) ∧Q2(x, z) with

Q1(x, t) : − bornIn(x, t)

Q2(x, z) : − ∃y.(likes(x, y), childOf(y, z)).

As discussed before, the calculation of Q2 can become very expensive. To over-
come this problem, we approximate the probabilistic answer to Q2 by a two-step
process. First, we create a newly formed compound relation likesChildOf, which
represents the database view generated by Q2

Q2(x, z) : −likesChildOf(x, z).

To create the compound relation we use the deterministic and sparse represen-
tation of the affected relations from Q2 and join them into a single relation.
This avoids the expensive calculation of the probabilities for each instance of
the active domain of y and can be computed efficiently as the deterministic join
is not expensive if the (deterministic) domain is sparse. However, the represen-
tation of Q2 would only be based on the available deterministic information so
far and would not utilize the probabilistic model of the triple store computed
by RESCAL. Hence in a second step we now need to derive probabilities for the
triples in the newly formed relation. Fortunately, all that is needed to derive these
probabilities under the RESCAL model is to compute a latent representation of
the newly created compound relation likesChildOf, which can be done very effi-
ciently. In the following, let X(∗) denote the newly created compound relation.
Furthermore, assume that a meaningful latent representation of the entities has
been explored via the factorization of the deterministic triple store. Since the
RESCAL model uses a unique representation of entities over all relations, all
that is needed to derive probabilities for a new relation is to compute its latent
representation R(∗). The big advantage of the proposed method is that R(∗) can
now be derived by simply projecting X(∗) into the latent space that is spanned
by the RESCAL factor matrix A. This can be done very efficiently: Consider
the ALS updates derived in [17]. Essentially what is needed is to calculate the
latent matrix for the materialized view, i.e., R(∗) as

R(∗) = (ZTZ + λI)−1ZTX(∗)

with Z = A⊗A.
R(∗) can be calculated more efficiently by using the following property of the
singular value decomposition regarding the Kronecker product [13]

A⊗A = (U ⊗ U)(Σ ⊗Σ)(V T ⊗ V T )
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where A = UΣV T . From this property the following update for R(∗) can be
derived [17],

R(∗) = V (S ~ UTX(∗)U)V T

where ~ represents the Hadamard (element-wise) matrix product and S is de-
fined as

[S]ij =
σiσj

σ2
i σ

2
j + λ

where σi is the i-th singular value of A. The calculation of R(∗) for the newly
created relation can now be done in O(r3 + nr + pr), where p represents the
number of nonzero entries in X(∗), r represents the rank of the factorization,
and where n� r represents all entities in the triple database. Please note that
the computation of R(∗) is now linear in all parameters regarding the size of
the triple store and cubic only in the number of latent components r that are
used to factorize the triple store. As such it can be computed efficiently even for
very large triple stores. Furthermore, for each query of the same type the same
relational representation can be used, i.e. R(∗) only needs to be computed once.

6 Experiments

6.1 Evaluating the Quality of the Approximation

First we conducted experiments on various smaller benchmark datasets. Here,
the materialized views (compound relations) can still be computed (and stored)
and we can compare the standard approach using materialized views constructed
by extensional query evaluation (Section 3.3) with our proposed method that ap-
proximates these views. The constructed views that we consider in these experi-
ments range over the join of two relational atoms of the type ∃y.S(x, y), T (y, z).
For evaluation, we removed ground tuples only from the deterministic relations S
and T and factorized the truncated triple store with RESCAL. From the result-
ing factorization, we construct the compound relation of S and T by extensional
query evaluation or approximated it with our proposed method. For both ap-
proaches, we measure the quality of the ranking via the Area Under the Receiver
Operating Characteristic Curve (AUC) in two settings: First, we compared the
ranking to the full ground truth, i.e. against the ranking constructed from the
full triple store(called all tuples in the following) including training and test
data (evaluation setting all). Second, we compared the ranking to that part of
the ground truth that could not have been inferred deterministically from the
truncated (training) data, therefore evaluating only the discovery of new tuples
(called unknown tuples in the following)(evaluation setting unknown). We report
the average scores after 10-fold cross-validation. Additionally, we also compared
the runtime of both techniques. All experiments were conducted with an Intel(R)
Core(TM) i5-3320M CPU @ 2.60GHz.
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Fig. 2. Results for the two materialized views negativeBehaviorToAlliedNa-
tionOf (Nations) and associatedToResultOf (UMLS): RESCAL+Rules(blue) rep-
resents the construction solely with the independent-project rule (Section 3.3).
RESCAL+Approx.(green) represents the approximation of these views with the method
proposed in this work (Section 5). (a,c) The left two bars show the performance (AUC)
on all tuples of the deterministic version of the corresponding materialized view (eval-
uation setting all). The right two bars show the performance (AUC) on the tuples that
were unknown at factorization and querying time (evaluation setting unknown).(b,d)
Show the runtime for constructing the views for each technique (independent-project
rule or approximation).

In the experiments, we used the Nations and the UMLS datasets:
Nations 14 × 14 × 56 multi-relational data that consist of relations between
nations (treaties, immigration, etc).
UMLS 135 × 135 × 49 multi-relational data that consist of biomedical relation-
ships between categorized concepts of the Unified Medical Language System.

For the nations dataset we explored the view : “Does x show negative be-
havior towards an ally of z?”, leading to the query

negativeBehaviorToAlliedNationOf(x, z) : −∃y.negativeBehaviorTo(x, y),

alliedNationOf(y, z).

For the UMLS dataset we materialized the view associatedToAndResultOf as

associatedToAndResultOf(x, z) : −∃y.associatedTo(x, y), resultOf(y, z).

The results of the experiments are shown in Figure 2. Generally, the results
in Figure 2.a and Figure 2.b show that both techniques do a good job when
constructing the compound relations. Regarding the ranking of all tuples in these
views, very high AUC values could be achieved. In case of the UMLS dataset,
the score is almost perfect (0.999). Also the discovery of unknown tuples seems
to work quite well (right bars in plots a and c). As would have been expected,
in both views the materializations based on the independent-project rule seem
to work a little bit better than the ones approximated by our proposed method,
but the performance is comparable (0.843/0.805 and 0.996/0.978).
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When we are looking at the runtime of the materialization of the views, it
can be clearly seen that the approximated compound relations are constructed
significantly faster than the ones constructed through the independent-project
rule. For the compound relation negativeBehaviorTo the rules based approach
takes 124 times longer (40 times longer for negativeBehaviorToAlliedNationOf ).
This result was expected since the complexity of the approximation is mostly
dependent on the rank of the factorization, where the construction through
independent-project is cubic in |ADom|.6

6.2 Evaluating Queries
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Fig. 3. Results for the queries (a) Q1(x) and Q2(x): RESCAL+Rules(blue) rep-
resents the answering with extensional query evaluation rules (Section 3.3).
RESCAL+Approx.(green) represents the query answer of a combination of extensional
query evaluation rules and the approximation of joined ∃y.Q type relational atoms.
(Section 5). (a,c) The left two bars show the quality of the probabilistic ranking (AUC)
when compared to all answer tuples returned from the complete deterministic triple
store with respect to the corresponding query (evaluation setting all). The right two
bars show the ranking quality (AUC) with respect to unknown answer tuples (eval-
uation setting unknown).(b,d) Shows the runtime for answering the query with each
technique (Extensional query evaluation with or without sub-query approximation).

In the second set of experiments, we used a larger triple store, i.e., a sample
of the DBpedia dataset7 [14] covering the musical domain and the task was to
answer predefined queries. The queries are answered by using both techniques,
rules and the sub-query approximation proposed in this work. We measure the
quality of the probabilistic ranking of answer tuples to the different predefined
queries in AUC. For evaluation we removed ground tuples from those relations
that take part in constructing parts of the query where our method is supposed to

6 |ADom| products have to be computed for each tuple in the compound relation
matrix when applying the independent-project rule.

7 http://wiki.dbpedia.org/Downloads35?v=pb8
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approximate the sub-query. The resulting truncated triple store is then factorized
by RESCAL. We compare the query answers inferred solely through extensional
query evaluation rules against our method, where sub-queries (compound rela-
tions) were approximated instead of applying the independent-project rule. As
in the first set of experiments, we compare the ranking of possible answer tuples
to the full ground truth, i.e. against the answer tuples inferred from the complete
deterministic triple store, including training and test data (called all tuples in
the following)(evaluation setting all). In addition we compared the ranking to
those answer tuples that could not have been inferred deterministically from the
truncated (training) data, therefore evaluating only the discovery of new tuples
(called unknown tuples in the following)(evaluation setting unknown). For the
query evaluation process the runtime of both approaches was also compared.

The DBpedia dataset:
DBpedia-music 44345 × 44345 × 7 multi-relational data that consists of rela-
tions and entities regarding the musical domain. The relations are Genre, Record-
Label (rL), associatedMusicalArtist, associatedBand, musicalArtist (mA), musi-
calBand, album. We pre-defined the following queries for the experiments:

– What songs or albums from the Pop-Rock genre are from musical artists
that have/had a contract with Atlantic Records?

Q1(x) : −∃y.(genre(x, z) ∧ mA(x, y) ∧ rL(y,Atlantic Records)).

– Which musical artists from the Hip Hop music genre have/had a contract
with Shady (SD), Aftermath (AM) or Death Row (DR) records?

Q2(x) : −∃y.(genre(x,Hip hop music)∧mA(x, y)∧rL(y, {SD,AM,DR}))
– Which musical artists from the Hip Hop music genre are associated with

musical artists that have/had a contract with Interscope Records and are
involved in an album whose first letter is a ”T”?

Q3(x) : −∃y.(associatedMusicalArtist(x, y) ∧ rL(y, Interscope Records))∧
genre(x,Hip hop music) ∧ ∃z.∃t.(mA(z, x) ∧ album(z, {Album T.*}))

Q1 and Q2 are calculated as

Q1(x) =

1−
∏

z∈{PopRock}

1− P (genre(x, z))


×
[

1−
∏

b∈ADom

1− P (mA(x, b) · P (rL(b,Atlantic record))

]
.

Q2(x) = P (genre(x,Hip hop music))

×

1−
∏

b∈ADom

1− P (mA(x, b)

1−
∏

c∈{SD,AM,DR}

1− P (rL(b, c))

 .
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The computation of Q3 is omitted, since its structure is a combination of Q1

and Q2. For the factorization of the database, a rank of r=100 was used. The
results of the experiments for Q1 and Q2 are shown in Figure 3. Similar to
the previous results, both approaches perform well and comparable in answer-
ing the queries. Also the discovery of unknown answer tuples seems to work
quite well (above 0.9) for both methods. Regarding the answering time (Figure
3.b,d) it can be clearly seen that the proposed method, which approximates the
view on musicalArtist(x, y) ∧ recordLabel(y, l), resulted in a significantly faster
response time for both queries, even though the complete join of musicalArtist
and recordLabel was not needed when using the independent-project rule. For
Q1, the query was answered 180 times faster and in case of Q2 this difference is
even greater, because we have a nested independent-project in the query (we ask
for multiple record labels). The response time of our method is almost the same
for both queries, where the runtime of the answer generated solely through the
extensional rules doubles for Q2. In case of Q3 (results not shown) this becomes
even more dramatic, because there are many potential albums that start with
T. As expected, the answer generated by the proposed approach doubles its run-
time to 3.6 seconds since Q3 is a combination of Q1 and Q2 (AUC 0.997, 0.985
(unknown answer tuples)), but without sub-query approximation the evaluation
of Q3 did not terminate even after 6 hours runtime! In addition, we constructed
a factorized representation of the approximated views which can be stored with
almost no cost (100 × 100 entries ≈ 80kByte). In comparison, a materialized
view constructed with rules would take 44345× 44345 entries ≈ 15.7GB.

From the results presented in this section, it can be observed that with the
technique introduced in Section 5 we are able to join sub-queries of the form
∃x.Q orders of magnitudes faster and that the join is competitive to a prob-
abilistically correct join generated solely through extensional query evaluation
rules (independent-project).

7 Conclusions

In this paper we have demonstrated how a factorized model based on the RESCAL
approach can lead to a very efficient representation of the probabilistic database
and also can be used to derive the probabilities for the ground tuples. Most
importantly, we have shown how efficient querying can be achieved within the
RESCAL framework by factorizing a deterministic view at query time.

In general, the approach is not restricted to the ∃x.Q type queries but can
always be employed when factorized materialized deterministic views can be used
to simplify the probabilistic query. Note that after we perform the deterministic
joins, we might obtain views with arities larger than two. This is not a serious
problem since our approach is not restricted to binary relations.
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Appendix

The sigmoidal transfer function sigε is defined as

sigε(x) = x if ε < x < 1− ε
sigε(x) =

ε

exp(1)
exp(x/ε) if x ≤ ε

sigε(x) = 1− ε

exp(1)
exp((1− x)/ε) if x ≥ 1− ε

and 0 ≤ ε ≤ 1/2.
Hereby, ε controls the spreading of the non-probabilistic confidence values

in the interval [0,1], and which values are affected by the function. Since sigε
is monotonic, the ordering is maintained. Asymptotically the Gaussian estimate
converges to the correct probabilities and we can set ε→ 0.


