
A Three-Way Model for Collective Learning on Multi-Relational Data

Maximilian Nickel NICKEL@CIP.IFI.LMU.DE

Ludwig-Maximilians-Universität, Munich, Germany

Volker Tresp VOLKER.TRESP@SIEMENS.COM

Siemens AG, Corporate Technology, Munich, Germany

Hans-Peter Kriegel KRIEGEL@DBS.IFI.LMU.DE

Ludwig-Maximilians-Universität, Munich, Germany

Abstract
Relational learning is becoming increasingly im-
portant in many areas of application. Here, we
present a novel approach to relational learning
based on the factorization of a three-way tensor.
We show that unlike other tensor approaches, our
method is able to perform collective learning via
the latent components of the model and provide
an efficient algorithm to compute the factoriza-
tion. We substantiate our theoretical considera-
tions regarding the collective learning capabili-
ties of our model by the means of experiments on
both a new dataset and a dataset commonly used
in entity resolution. Furthermore, we show on
common benchmark datasets that our approach
achieves better or on-par results, if compared to
current state-of-the-art relational learning solu-
tions, while it is significantly faster to compute.

1. Introduction
With the growing relevance of relational data and network
data in such diverse areas as social network modeling, the
semantic web, bioinformatics and artificial intelligence, the
field of relational learning is increasing in importance. This
paper is concerned with the application of tensors to re-
lational learning. Tensors and their decompositions are
widely used in fields like psycho- or chemometrics and
more recently have also been applied to data mining and
machine learning problems, e.g. for modelling temporal ef-
fects in social networks. In relational learning, tensors have
just emerged to be used as an alternative to more common
approaches like graphical models. The motivation to use
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tensors in this domain is manifold. From a modelling per-
spective tensors provide simplicity, as multiple relations of
any order can be expressed straightforwardly as a higher-
order tensor. Moreover, no a priori knowledge about the
structure of the problem needs to be known or needs to be
inferred from the data, as it is necessary e.g. for graphical
models like Bayesian Networks or Markov Logic Networks
(MLN). A reason to employ tensor decompositions from a
learning perspective is that relational domains are usually
high-dimensional and sparse, a setting where factorization
methods have shown very good results.

An important property of relational data is that correlations
can be produced between multiple interconnected nodes.
These correlations can be captured by including the at-
tributes, relations or classes of related entities in a learning
task. However, well-known tensor factorization approaches
such as CANDECOMP/PARAFAC (CP) (Harshman &
Lundy, 1994) or Tucker (Tucker, 1966) cannot model this
collective learning effect sufficiently. The DEDICOM de-
composition (Harshman, 1978) is capable of detecting this
type of correlations, but unfortunately, it puts constraints
on the model that are not reasonable for relational learning
in general and thus leads to suboptimal results. In this pa-
per we propose the relational learning approach RESCAL
which is based on a tensor factorization that is related to
DEDICOM but does not exhibit the same constraints. In
doing so we are able to derive models of higher quality and
with significant runtime improvements. We will present
an efficient algorithm for computing the factorization and
evaluate our approach on both a new collective learning
dataset and relational learning benchmark datasets. We
will show that significant improvements can be achieved
by using our model compared to more commonly used ten-
sor models like CP. Furthermore, we will also show that
our approach gives better or similar results if compared to
current state-of-the-art approaches in relational learning on
these datasets, while only taking a fraction of the time to
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compute.

2. Modelling and Notation
The modelling approach of relational domains in this pa-
per is the following. To represent dyadic relational data
we make use of the semantic web’s RDF formalism where
relations are modeled as triples of the form (subject,
predicate, object) and where a predicate either
models the relationship between two entities or between
an entity and an attribute value. In order to model dyadic
relational data as a tensor, we employ a three-way tensor
X , where two modes are identically formed by the concate-
nated entities of the domain and the third mode holds the re-
lations.1 Figure 1 provides an illustration of this modelling
method. A tensor entry Xijk = 1 denotes the fact that there
exists a relation (i-th entity, k-th predicate,
j-th entity). Otherwise, for non-existing and un-
known relations, the entry is set to zero.

Figure 1: Tensor model for relational data. E1 · · ·En denote the
entities, while R1 · · ·Rm denote the relations in the domain

In the remainder of this paper we will use the following
notation: Tensors are represented by calligraphic letters X ,
while Xk refers to the k-th frontal slice of the tensor X .
X(n) denotes the unfolding of the tensor X in mode n. A⊗
B refers to the Kronecker product of the matricesA andB.
Ik denotes the identity matrix of size k and vec(X) is the
vectorization of the matrix X . Vectors are represented by
bold lowercase letters, e.g. a. Furthermore, it is assumed
that the data is given as a n× n×m tensor X , where n is
the number of entities and m the number of relations.

3. Related Work
The literature on statistical relational learning is vast, thus
we will only give a very brief overview. A common ap-
proach to relational learning is to employ graphical mod-
els such as Bayesian Networks or Markov Logic net-
works (Friedman et al., 1999; Richardson & Domingos,
2006). Moreover, IHRM (Xu et al., 2006) and IRM (Kemp

1Please note that we don’t assume homogeneous domains,
thus the entities of one mode can be instances of multiple classes
like persons, items, places, etc.

et al., 2006) are nonparametric Bayesian approaches to
relational learning, while (Singh & Gordon, 2008) em-
ploy collective matrix factorizations for relational learn-
ing. (Getoor & Taskar, 2007) presents further approaches
and gives a detailed introduction into the area of relational
learning. Tensor decompositions have been widely applied
to fields like psycho- and chemometrics. An extensive re-
view of tensor decompositions and their applications can
be found in (Kolda & Bader, 2009). Recently, (Sutskever
et al., 2009) introduced the Bayesian Clustered Tensor Fac-
torization (BCTF) and applied it to relational data. (Sun
et al., 2006) presents methods for dynamic and streaming
tensor analysis. These methods are used to analyse network
traffic and bibliographic data. (Franz et al., 2009) use CP
to rank relational data that is given in form of RDF triples.

4. Methods and Theoretical Aspects
Relational learning is concerned with domains where enti-
ties are interconnected by multiple relations. Hence, corre-
lations can not only occur directly between entities or re-
lations, but also across these interconnections of different
entities and relations. Depending on the learning task at
hand, it is known that it can be of great benefit when the
learning algorithm is able to detect these relational learn-
ing specific correlations reliably. For instance, consider the
task of predicting the party membership of a president of
the United States of America. Without any additional infor-
mation, this can be done quite accurately when the party of
the president’s vice president is known, since both persons
have mostly been members of the same party. To include
information such as attributes, classes or relations of con-
nected entities to support a classification task is commonly
referred to as collective classification. However, this proce-
dure can not only be useful in classification problems, but
also in entity resolution, link prediction or any other learn-
ing task on relational data. We will refer to the mechanism
of exploiting the information provided by related entities
regardless of the particular learning task at hand as collec-
tive learning.

4.1. A Model for Multi-Relational Data

To perform collective learning on multi-relational data, we
propose RESCAL, an approach which uses a tensor factor-
ization model that takes the inherent structure of relational
data into account. More precisely, we employ the follow-
ing rank-r factorization, where each slice Xk is factorized
as

Xk ≈ ARkAT , for k = 1, . . . ,m (1)

Here,A is a n×r matrix that contains the latent-component
representation of the entities in the domain and Rk is an
asymmetric r× r matrix that models the interactions of the
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latent components in the k-th predicate.

The factor matrices A and Rk can be computed by solving
the regularized minimization problem

min
A,Rk

f(A,Rk) + g(A,Rk) (2)

where

f(A,Rk) =
1

2

(∑
k

‖Xk −ARkAT ‖2F

)
(3)

and g is the following regularization term

g(A,Rk) =
1

2
λ

(
‖A‖2F +

∑
k

‖Rk‖2F

)
(4)

which is included to prevent overfitting of the model.

An important aspect of (1) for collective learning and what
distinguishes it from other tensor factorizations like CP or
even BCTF is that the entities of the domain have a unique
latent-component representation, regardless of their occur-
rence as subjects or objects in a relation, as they are repre-
sented both times by the matrix A. The effect of this mod-
elling becomes more apparent by looking at the element-
wise formulation of (3), namely

f(A,Rk) =
1

2

∑
i,j,k

(
Xijk − aTi Rkaj

)2
Here, ai and aj denote the i-th and j-th row of A and
thus are the latent-component representations of the i-
th and j-th entity. By holding aj and Rk fixed, it
is clear that the latent-component representation ai de-
pends on aj as well as the existence of the triple (i-th
entity, k-th predicate, j-th entity) repre-
sented by Xijk. Moreover, since the entities have a unique
latent-component representation, aj holds also the infor-
mation which entities are related to the j-th entity as sub-
jects and objects. Consequently, all direct and indirect re-
lations have a determining influence on the calculation of
ai. Just as the entities are represented byA, each relation is
represented by the matrix Rk, which models how the latent
components interact in the respective relation and where
the asymmetry of Rk takes into account whether a latent
component occurs as a subject or an object.

For a short illustration of this mechanism, consider the
example shown in Figure 2. The latent-component rep-
resentations of Al and Lyndon will be similar to each
other in this example, as both representations reflect that
their corresponding entities are related to the object Party
X. Because of this, Bill and John will also have sim-
ilar latent-component representations. Consequently, the
product aTBillRpartyaPartyX will yield a similar value to

Bill

Party X

party

Al

vicePresidentOf

party

John

party

Lyndon

vicePresidentOf

party

Figure 2: Visualization of a subgraph of the relational graph for
the US presidents example. The relation marked red is unknown.

aTJohnRpartyaPartyX and as such the missing relation can be
predicted correctly. Please note that this information prop-
agation mechanism through the latent components would
break if Bill and John would have different representa-
tions as subjects and objects.

4.2. Connections to other Tensor Factorizations

The model specified in (1) can be considered a relaxed
version of DEDICOM or equivalently, an asymmetric ex-
tension of IDIOSCAL. The rank-r DEDICOM decom-
position of a three-way tensor X is given as: Xk ≈
ADkRDkA

T , for k = 1, . . . ,m. Here,A is a n×r matrix
that contains the latent components andR is an asymmetric
r × r matrix that models the global interactions of the la-
tent components. The diagonal r×r matrixDk models the
participation of the latent components in the k-th predicate.
Thus, DEDICOM is suitable when there is one global in-
teraction model for the latent components and its variation
across the third mode can be described by diagonal factors.
Examples where this is a reasonable assumption include
international trade or communication patterns across time,
as presented in (Bader et al., 2007). However, for multi-
relational data this assumption is often too restricted.

Furthermore, the model (1) can be regarded as a restricted
Tucker3 model. Let X(n) = AG(n)(C⊗B)T be the matri-
cized form of the Tucker3 decomposition of X . (1) is then
equivalent to a Tucker3 model, where the factors B and C
are constrained to B = A and C = Ik, while G is holding
the slices Rk.

4.3. Computing the Factorization

In order to compute the factor matrices for (1), equation (2)
could be solved directly with any nonlinear optimization
algorithm. However, to improve computational efficiency
we take an alternating least-squares (ALS) approach and
exploit the connection of (1) to DEDICOM, by using the
very efficient ASALSAN (Bader et al., 2007) algorithm as
a starting point and adapting it to our model. In particular,
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we employ the following algorithm:

Update A: To compute the update step of A we use
the same approach as ASALSAN and solve the problem
approximately for left and right A simultaneously for all
frontal slices of X . The data is stacked side by side for
this, such that

X̄ = AR̄(I2m ⊗AT ) (5)

where

X̄ = (X1 X
T
1 . . . Xm XT

m)

R̄ = (R1 R
T
1 . . . Rm RTm)

We approximate this nonlinear problem by solving only for
the left A while holding the right A constant. As (Bader
et al., 2007) points out, this approach seems to be viable
because of the construction of X̄ . Let Ā denote the constant
right hand A. Then, the gradient of (5) is given by

∂f

∂A
= R̄[(I⊗ ĀT Ā)R̄TAT − (I⊗ ĀT )X̄T ] + λAT

By using the method of normal equations and setting this
gradient to zero, the update of A can be computed by

A←

[
m∑
k=1

XkAR
T
k +XT

k ARk

][
m∑
k=1

Bk + Ck + λI

]−1
where

Bk = RkA
TARTk , Ck = RTkA

TARk

Update Rk: By holding A fixed and vectorizing Xk as
well as Rk, the minimization problem (3) can be cast as

f(Rk) = ‖vec(Xk)− (A⊗A)vec(Rk)‖
+λ‖vec(Rk)‖

what is a regularized linear regression problem and can be
solved accordingly, i.e. by

Rk ←
(
ZTZ + λI

)−1
Zvec(Xk)

where Z = A⊗A.

The starting points for A and Rk can either be random ma-
trices or A is initialized from the eigendecomposition of∑
k(Xk + XT

k ). To compute the factor matrices, the al-
gorithm performs alternating updates of A and all Rk until
f(A,Rk)
‖X‖2F

converges to some small threshold ε or a maximum
number of iterations is exceeded.

One benefit of RESCAL is that it can be computed effi-
ciently. Similar to the ASALSAN algorithm, it is possible
to use the QR decomposition of A and Xk for updating

Rk such that A and Xk are only r × r matrices. In do-
ing so, updating Rk becomes independent from the num-
ber of entities and is only dependent on the complexity of
the model. Despite its similarities to DEDICOM, there are
significant computational advantages of our approach, as a
simpler model is computed. Evidently, (1) has no Dk fac-
tors, a problem that has to be solved in ASALSAN by New-
ton’s method. Moreover, in RESCAL the term

(
ZTZ

)−1
Z

isn’t dependent on k and thus only needs to be computed
once before updating all Rk. Computing the inverse of(
ZTZ + λI

)
is the most expensive operation in updating

Rk, as Z is the result of a Kronecker product and thus can
become very large. However, in case Rk is not regularized,
this can be simplified. Since (A⊗B)(C⊗D) = AC⊗BD
and (A⊗ B)−1 = (A−1 ⊗ B−1) (Horn & Johnson, 1994)
it holds that(

ZTZ
)−1

=
(
ATA

)−1
A⊗

(
ATA

)−1
A

Here, the inverse only has to be computed for the much
smaller matrix ATA. Furthermore, since m occurs only
as a linear factor, the algorithm will scale linearly with
the number of predicates. But the simplicity of the model
comes also at a cost. It can be seen from (1) and the rep-
resentation as a Tucker3 model that no rank reduction is
performed on the mode that holds the relations, what po-
tentially can have a negative effect when the relations are
noisy and should be aggregated simultaneously with the en-
tities.

4.4. Solving Relational Learning Tasks

Canonical relational learning tasks can be approached with
RESCAL in the following way. To predict whether a link
exists between two entities ei, ej for the k-th predicate,
it is sufficient to look at the rank-reduced reconstruction
X̂k = ARkA

T of the appropriate slice Xk. In doing so,
link prediction can be done by comparing X̂ijk > θ to
some given threshold θ or by ranking the entries accord-
ing to their likelihood that the link in question exists.

Collective classification can be cast as a subtask of link pre-
diction, as the class of an entity can be modelled by intro-
ducing a class relation and including the classes as entities
in the tensor. Thus, the classification problem can also be
solved by reconstructing the appropriate slice of the class
relation. The collectivity of the classification, as for all
other learning tasks, is given automatically by the structure
of the model.

Furthermore, the matrix A can be regarded as the entity-
latent-component space that is created by the decomposi-
tion. Link-based clustering can be performed by clustering
the entities in this entity-latent-component space. In doing
so, the similarity between entities is computed upon their
similarity across multiple relations.
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Figure 3: (a) is a visualization of the presidentOf relation on the US presidents dataset. The size of the ring segments indicates
how many persons in the dataset are members of the respective party. An arc indicates a presidentOf relation and the size of an arc
indicates how often this relation occurs between the connected segments. (b) shows the results of 10-fold cross-validation on this data.

5. Evaluation
In the following we evaluate RESCAL in comparison to
standard tensor factorizations and relational learning algo-
rithms on various datasets. All algorithms have been im-
plemented in Python and evaluated on a Intel Core 2 Duo
2.5GHz with 4GB RAM. For CP we implemented the CP-
ALS algorithm of the Tensor Toolbox (Bader & Kolda,
2010) in Python/NumPy.

5.1. Collective Classification

The first experiment in this evaluation is designed to as-
sess, in a controlled setting, the collective learning capa-
bilities of our approach as discussed in Section 4. For
this purpose, we created a dataset for the US presi-
dents example, by retrieving the names of all presidents
and vice presidents of the United States from DBpe-
dia, in combination with their party membership and the
presidentOf/vicePresidentOf information.2 The
objective of the experiment is to predict the party mem-
bership for each person in a collective classification set-
ting. It can be seen from Figure 3(a), that a president and
his/her vice president have mostly been members of the
same party. Hence, the ability to perform collective learn-
ing by including the party of a related person should greatly
improve the classification results, especially as the dataset
contains no further information other than the three rela-
tions that could help in predicting the correct party. From
the raw RDF data we constructed a 93 × 93 × 3 tensor,
where the entity modes correspond to the joint set of per-
sons and parties and the third mode is formed by the three
relations. In addition to RESCAL we evaluated the tensor

2Dataset available at
http://www.cip.ifi.lmu.de/~nickel

factorizations CP and DEDICOM. Moreover, we included
the SUNS algorithm (Huang et al., 2010) in the evaluation,
a relational learning approach for large scale data. Despite
SUNS’ ability to handle large data sizes, its capabilities
for collective learning are limited. Therefore, SUNS is a
good indicator what improvement can be gained in collec-
tive learning. For the same reason we included Aggregated
SUNS (SUNS+AG), which mimics collective learning and
thus is the counterpart of SUNS without aggregation.3 To
evaluate the algorithms we’ve conducted cross-validation
by partitioning all persons into ten folds and deleting the
party membership information of the persons in the test
fold. In the case of RESCAL, CP and DEDICOM we com-
puted a rank-reduced factorization, ranked all parties by
their entries in the reconstructed party-membership-slice
and recorded the area under the precision-recall curve. It
can be seen from Figure 3(b) that aggregation improves
the SUNS model significantly. The results of RESCAL
and DEDICOM outperform both CP and SUNS and show
clearly the usefulness of our approach for domains where
collective learning is an important feature. It can also be
seen that CP isn’t capable of collective learning, as it yields
similar results to SUNS. There is also a significant differ-
ence between the results of RESCAL and DEDICOM, what
indicates that, even on this small dataset with highly corre-
lated predicates, the constraints imposed by DEDICOM are
to restrictive.

5.2. Collective Entity Resolution

The US presidents example demonstrated the capabilities
of our approach on a small, specially created dataset. In

3Here, aggregation means that the party membership informa-
tion of the related person has been added manually as a new rela-
tion to each statistical unit

http://www.cip.ifi.lmu.de/~nickel
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Figure 4: (a) shows the structural representation of the Cora dataset. (b)-(d) show the results for the area under the precision-recall
curve for 5-fold entity resolution runs on this dataset

turn, the Cora dataset is a larger real-world dataset which
is commonly used to assess the performance of relational
learning approaches in tasks like collective classification or
entity resolution. It is especially interesting as it is known
that applying collective learning to this dataset can improve
the quality of the model significantly (Sen et al., 2008).
Cora exists in different versions, here we use the dataset
and experimental setup as described in (Singla & Domin-
gos, 2007) and also compare our results to those reported in
that publication. From the raw data we constructed a tensor
of size 2497× 2497× 7.

The objective of this experiment is to perform entity reso-
lution, as described in the following: While MLNs have to
treat entity resolution as a link prediction problem, i.e. by
predicting the probability of the triple (x, isEqual,
y), tensor factorizations allow us take a different approach.
We derive the likelihood that two entities are identical
from their similarity in the entity-latent-component space
A. More specifically, we normalize the rows ofA, such that
each row represents the normalized participation of the cor-
responding entity in the latent components. Based on this
representation we compute the similarity between two en-
tities x, y by using the heat kernel k(x, y) = e−‖x−y‖

2/δ ,
where δ is a user-given constant and use this similarity
score as a measure for the likelihood that x and y refer
to the same entity. This is a relative ad hoc approach to
entity resolution, but the focus of this experiment is again
rather on assessing the collective learning capabilities of
our approach than conducting a full entity resolution ex-
periment. We are mainly interested whether our approach
can produce results roughly similar to MLNs and how they
compare to CP. Figure 4 shows the results of our evalua-
tion, which are especially interesting in combination with
the structural representation of the data. Since the Cita-
tion class is the central node in Figure 4 and the other
classes aren’t interconnected, it is sufficient to look only

at directly connected entities in order to perform entity
resolution for citations. But the citations are noisy them-
selves. Therefore, when entity resolution has to be done
for an author or a venue, it is very helpful for an algorithm
when it can include the entities that are connected to an
author’s or venue’s citation in its evaluation of the entity.
This circumstance is reflected in the evaluation results in
Figure 4. For citations there is no significant difference be-
tween RESCAL and CP. For authors and venues however,
RESCAL gives far better results than CP, as it can perform
collective learning. In the case of venues, it shows even
better results than the much more complex MLN.

5.3. Kinships, Nations and UMLS

In order to evaluate how well RESCAL is performing com-
pared to current state-of-the-art relational learning solu-
tions, we applied it to the Kinships, Nations and UMLS
datasets used in (Kemp et al., 2006) and compared the area
under the precision-recall curve (AUC) to the results of
BCTF, IRM and MRC published in (Sutskever et al., 2009)
and (Kok & Domingos, 2007). Due to space constraints we
refer to (Kemp et al., 2006) for a detailed description of the
datasets. In order to get comparable results to BCTF, IRM
and MRC we followed their experimental protocol and
performed 10-fold cross-validation by using (subject,
predicate, object) triples as the statistical unit. For
a comparison to standard tensor decompositions we’ve in-
cluded CP and DEDICOM in the evaluation. The task for
all three datasets is link prediction. Figure 5 shows the re-
sults of our evaluation. It can be seen that RESCAL gives
comparable or better results than BCTF, IRM and MRC on
all datasets.

At last we want to briefly demonstrate the link-based clus-
tering capabilities of RESCAL. Therefore, we computed a
rank-20 decomposition of the Nations dataset and applied
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Figure 5: Link prediction results for the Kinships, Nations and UMLS datasets

k-means with k = 6 to the matrix A. It can be seen from
Figure 6 that in doing so, similar clusters as in (Kemp et al.,
2006) are obtained. The countries are partitioned into one
group containing countries from the communist bloc, two
groups from the western bloc, where Brazil is separated
from the rest, and three groups for the neutral bloc. The six
relations shown in Figure 6 indicate that this is a reasonable
partitioning of the data.

Netherlands
UK

USA
Brazil

Burma
Jordan
Egypt
Israel
India

Indonesia
China
Cuba

Poland
USSR

Treaties Conferences Military Alliance

Netherlands
UK

USA
Brazil

Burma
Jordan
Egypt
Israel
India

Indonesia
China
Cuba

Poland
USSR

Joint Membership of IGOs Joint Membership of NGOs Common Bloc Membership

Figure 6: A clustering of countries in the Nations dataset. Black
squares indicate an existing relation between the countries. Gray
squares indicate missing values.

5.4. Runtime Performance and Technical
Considerations

Relational datasets can become large very quickly, hence
runtime if often a critical issue in real world problems. We
recorded the runtime of CP, DEDICOM and regularized
RESCAL on various datasets for different ranks. Table 1
shows the results of this evaluation. All algorithms have
been started multiple times from random initializations and
their convergence tolerance was set to ε = 10−5. Despite
the efficiency of the ASALSAN algorithm, it is evident that
RESCAL often gives a huge improvement over DEDICOM
in terms of runtime performance. This is mainly due to two

reasons. The simpler model of RESCAL allows significant
improvements with regard to the computational complex-
ity, as discussed in Section 4. But interestingly, RESCAL
shows even runtime improvements in comparison to CP,
although CP-ALS is theoretically faster to compute. We
believe that this is the case because the RESCAL model
is more suitable for relational data which is indicated by
a faster convergence rate, as for purely random tensors of
arbitrary size CP-ALS is consistently faster than RESCAL.
However, it should also be noted that RESCAL often scales
worse with the regard to the rank than CP-ALS, in par-
ticular for regularized problems. In comparison to MRC
and IRM it is the case that RESCAL as well as CP-ALS
show much faster training times. (Kok & Domingos, 2007)
states that IRM and MRC have been run at least ten hours
per fold on the IRM datasets, while both tensor decomposi-
tions show training times below 2 minutes per fold. Unfor-
tunately there is no information about runtime performance
or publicly available code for BCTF.

Table 1: Runtime comparison on various datasets. |E| denotes the
number of entities, |R| the number of relations in the data. The
symbol - indicates that the algorithm didn’t converge.

Dataset Algorithm Total Runtime

Rank
10 20 40

Kinships CP-ALS 6.4s 25.4s 105.8s
|E|: 104, |R|: 26 ASALSAN 527s 1549s 16851s

RESCAL 1.1s 3.7s 51.2s

Nations CP-ALS 16.4s 43.8s 68.3s
|E|: 125, |R|: 57 ASALSAN 830s 4602s 42506s

RESCAL 1.7s 5.3s 54.4s

UMLS CP-ALS 5.5s 11.7s 53.9s
|E|: 135, |R|: 49 ASALSAN 1706s 4846s 6012s

RESCAL 2.6s 4.9s 72.3s

Cora CP-ALS 369s 934s 3190s
|E|: 2497, |R|: 7 ASALSAN 132s 154s -

RESCAL 364s 348s 680s
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At last we want to make a case for the ease of use of
RESCAL. Its algorithm only involves standard matrix op-
erations and has been implemented in Python/NumPy with-
out any additional software in less than 120 lines of code.
An efficient implementation of CP-ALS on the other hand
requires special tensor operations and data structures like
the Khatri-Rao product or the Kruskal tensor.

6. Conclusion and Future Work
RESCAL is a tensor factorization approach to relational
learning which is designed to account for the inherent struc-
ture of dyadic relational data. In doing so, our approach is
able to perform collective learning via the latent compo-
nents of the factorization. The results on various datasets
as well as the runtime performance are very competitive
and show that tensors in general and RESCAL specifically
are promising new approaches to relational learning. Cur-
rently we intend to investigate different extensions to our
approach. In order to obtain highly scalable solutions, we
are looking into distributed versions of RESCAL as well as
a stochastic gradient descent approach to the optimization
problem. Furthermore, to improve both the predictive per-
formance and the runtime behaviour of RESCAL, we also
plan to exploit constraints like typed relations while com-
puting the factorization.
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