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ABSTRACT
In this paper, we present an original network graph em-
bedding to speed-up distance-range and k-nearest neighbor
queries in (weighted) graphs. Our approach implements the
paradigm of filter-refinement query processing and can be
used for proximity queries on both static as well as dynamic
objects. In particular, we present how our embedding can be
used to compute a lower and upper bounding filter distance
which approximates the true shortest path distance signifi-
cantly better than traditional filters, e.g. the Euclidean dis-
tance. These distance approximations can be used within
a filter step to prune true drops and true hits as well as in
the refinement step in order to guide an informed A* search.
Our experimental evaluation on several real-world data sets
demonstrates a significant performance boosting of our pro-
posed concepts over existing work.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval

General Terms
Performance

Keywords
Proximity queries, traffic networks, network embedding

1. INTRODUCTION
Efficient support of proximity queries in large traffic net-

works are required in many applications of GIS such as
location-based services, and traffic network monitoring. Traf-
fic networks are usually modeled by graphs. Nodes of the
graph represent crossings such as road intersections or junc-
tions, whereas edges represent connections such as roads
or railways between nodes. The data objects representing
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points of interest such as cars and service stations are dis-
tributed over this road network, i.e. are located at nodes or
on edges or may move along the graph.

The most prominent proximity queries in road networks
are distance range queries (DRQ) and k-nearest neighbor
queries (kNNQ). A DRQ retrieves for a given query object
q all static and dynamic objects within the network that
have a distance of at most ε to q in the moment of query
launching. A kNNQ returns the k ≥ 1 objects having the
smallest distance to a query object q in the moment of query
launching. The distance between objects in the network is
measured by means of the shortest path distance which can
be computed by the well-known Dijkstra algorithm.

Since the Dijkstra algorithm suffers from high computa-
tional cost, a lot of research work has been done recently
to speed up the network distance computation. However, in
today’s applications of GIS usually a high number of online
queries on networks of hundreds of thousands or even mil-
lions of nodes have to be answered in real-time. Obviously,
an efficient solution is utterly necessary for such scenarios.
Thus, since the distance computation is rather costly, a fil-
ter/refinement approach is envisioned, applying a cheaper
filter step in order to efficiently partition the data objects
into a set of true hits and/or true drops, and a set of candi-
dates, that need to be further analyzed. In order to decide
about true hits, we need a progressive filter step that im-
plements the upper bounding property. On the other hand,
a conservative filter implementing the lower bounding prop-
erty is needed to decide about true drops. The remaining set
of candidates that cannot be discarded from or included in
the result set by means of the filter step, need to be refined,
i.e. the true network distance needs to be computed.

In this paper, we propose a novel method for efficient sim-
ilarity search in large graph networks implementing a fil-
ter/refinement architecture. The proposed method is based
on a network graph embedding that transforms each graph
node into a k-dimensional vector space. We outline how
this embedding can be computed and managed efficiently
for static and dynamic objects. Based on the embedding,
we derive accurate lower- and upper bounds for the network
distance which can be computed efficiently. These distance
approximations can be used in a filter step to efficiently
prune true hits and true drops without exact distance com-
putation. Furthermore, our distance approximations can be
used to guide an informed A* search to accelerate shortest
path computation in the refinement step.

The paper is organized as follows. Section 2 introduces
preliminary definitions and discusses related work. Section
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Figure 1: Network graph example.

3 introduces the embedding technique which we call refer-
ence node embedding. In Section 4 we sketch our multi-step
query processing architecture for proximity queries. Section
5 presents a comparative evaluation of the proposed meth-
ods and Section 6 concludes the paper.

2. PRELIMINARIES AND RELATED WORK

2.1 Preliminaries
Let D be a database of objects that are located in a traffic

network, e.g. cars or pedestrians in a network of streets.
The traffic network is represented by an undirected weighted
graph G = (N, E, W ) called network graph, where N denotes
the set of nodes, E ⊆ N × N denotes the set of edges and
the function W : E → �

+ associates a weight w(ni, nj) to
each edge (ni, nj) ∈ E. The network distance between two
nodes ni, nj ∈ N , denoted by dnet(ni, nj), equals w(ni, nj)
if (ni, nj) ∈ E, else it equals the length of the shortest path
from ni to nj . The length of a path is defined as the sum of
the weights of all participating edges.

We assume that each data object o ∈ D is located some-
where in the traffic network, i.e. either on a node or on an
edge. If an object o is located on an edge (ni, nj) ∈ E, di(o)
and dj(o) denote the distance of o to the adjacent nodes
ni and nj , respectively. The network distance between two
objects oi, oj ∈ D, dnet(oi, oj), is the length of the shortest
path between oi and oj . Thereby, we assume that oi and
oj are additional “virtual” nodes of the graph. Thus, if oi is
located on edge (ni1 , ni2) we introduce additional “virtual”
edges (oi, ni1) and (oi, ni2) with weights w(oi, ni1) = di1(oi)
and w(oi, ni2) = di2(oi), respectively. If oi is located on a
node n, we do not need to introduce additional edges or
nodes but can work with n instead of oi. Note, that by
introducing the additional “virtual” nodes for objects, the
network distance is still a function N × N → �. Whenever
we use dnet as a function on D × D in the following, we
assume the introduction of virtual nodes for the according
objects if necessary.

An example network graph is shown in Figure 1, where the
graph nodes are depicted as points and the crosses depict the
objects. If there is no object on an edge, the corresponding
weight is depicted. Else, only the distances of the objects to
the adjacent nodes are shown. In this case, the edge weights
are obtained by summing up these distances. For example,
the weight of edge (n3, n2) is w(n3, n2) = 7 units, whereas
the weight of the edge (n2, n1) is d2(o1)+d1(o1) = 5+2 = 7
units. In our example, the shortest path between the nodes
n10 and n6 is 〈n10, nD, n9, n5, n6〉 and has a length of 18

units, i.e. dnet(n10, n6) = 18. The shortest path between
the objects o1 and o3 is 〈o1, n2, n5, n6, o3〉 and has a length
of 19 units, i.e. dnet(o1, o3) = 19.

Based on the network distance, proximity queries are given
as follows. Given a query object q located on the graph G
and a distance threshold ε ∈ �+, a DRQ returns the set
DRQ(q, ε) = {o ∈ D | dnet(q, o) ≤ ε}. Given a query object
q located on the graph G and a number k ∈ �+, a kNNQ
returns the set NNQ(q, k) containing k objects such that
∀o ∈ NNQ(q, k), ô ∈ D\NNQ(q, k) : dnet(q, o) ≤ dnet(q, ô).

2.2 Related Work
Proximity queries in traffic networks are based on net-

work distances defined by the shortest path between two
objects. For computing the shortest path, commonly the
well-known Dijkstra algorithm [5] is used. It expands the
path from the starting node towards the target node using a
priority queue of visited nodes sorted by ascending distance
from the starting node. Several variants of this algorithm
[4] differ on how they manage the priority queue. The A*
algorithm [14] applies heuristics to prune the search space
and direct the graph expansion. Materialization techniques
accelerate shortest path processing by using pre-computed
results stored in materialized views [1, 9, 11] but suffer from
increasing storage costs. The performance of secondary-
memory adaptations of shortest path algorithms has been
analyzed in [10, 21]. In [15] the authors divide the graph
into regions and gather information whether an edge is on
a shortest path leading to a specific region. All these ap-
proaches provide only a speed-up for the exact distance com-
putation but cannot be used as a filter step.

Since the network graph corresponds to a traffic network
stretching a 2D plane, we can assign to each node and to
each object a 2D coordinate w.r.t. an origin. The 2D co-
ordinates of a node n are denoted by (n.x, n.y). Based on
these 2D coordinates, the Euclidean distance deucl(ni, nj) =p|ni.x − nj .x|2 + |ni.y − nj .y|2 between nodes and/or ob-
jects can be computed, corresponding to the direct “airline
distance”between these (possibly virtual) nodes. One of the
first papers which deals with the efficient processing of spa-
tial queries is [17] using the Euclidean distance as a lower
bounding filter in order to guide an incremental network ex-
pansion for refinement. This approach works well for high-
proximity queries (i.e. small query range or small nearest-
neighbor coefficient k) and dense object distributions. How-
ever, when the objects in the traffic network are sparsely
distributed, then this approach requires to retrieve a large
portion of the network for distance computation and conse-
quently yields a poor performance. Furthermore, as this ap-
proach uses the Euclidean distance to guide the network ex-
pansion it does not provide an upper bounding filter. Thus,
it can only be used to decide about true drops, but not about
true hits. This results in a larger amount of candidates that
need to be refined. In addition, the lower bound approxi-
mation using Euclidean distance is often very coarse.

In [20] one of the graph embedding technique from [16] is
applied in order to estimate the network distance between
two nodes in a very efficient way. On the basis of the tradi-
tional approach they present an extended dynamic embed-
ding which takes into consideration that the objects on the
network move, i.e. change continuously their locations. In
addition, they show how the graph embedding can be used
to compute the shortest path between two objects. How-



ever, they proposed only an algorithm which computes an
approximated shortest path, whereas, the accuracy of the
query result depends on the density and distribution of the
objects in space. Furthermore, the embedded space of the
presented technique involves 40 to 256 dimensions, and thus,
high-dimensional index structures are required. In our ap-
proach, we also use an embedding technique that transforms
the planar network graph in a higher dimensional space. In-
stead of a reference-set-based embedding as proposed in [20],
we use a reference-node-based embedding that achieves ad-
equate distance approximations with a low-dimensional em-
bedding space, even for very large traffic networks. The
distance approximations obtained from the embedded space
can then be used in a filter step to identify the result candi-
dates of the DRQ or kNNQ. The main drawback of the ap-
proach presented in [20] is that it does not offer any solution
for the computation of the exact distances of the candidates
in the subsequent refinement step.

Recently, Hu et al. proposed another solution for the pre-
computation and indexing of network distances for objects
in road networks [8]. The basic idea of their approach is
to use distance signatures for each data object in the net-
work graph which are computed offline and stored efficiently.
The distance signature of an object o contains a vector of dis-
tance approximations between o and all other data objects in
the network graph. These distance approximations are then
used to efficiently determine the candidates of a proximity
query in a filter step. Subsequently, the exact distances of
the candidates have to be computed online in the refinement
step. This computation is supported by a linked list associ-
ated with each distance signature that optimally guides the
search of the shortest paths from the query object q to the
candidates. The main drawback of this proposal is that the
storage and query cost highly depend on the number of data
objects, as each data object leads to an entry in the distance
signature. For a reasonable number of data objects, the stor-
age cost of the signatures might explode which would lead
to a poor query performance. Furthermore, this approach
does not support proximity queries on moving objects, i.e.
objects frequently changing their actual positions.

An alternative approach to the partial or complete ma-
terialization of the network distances is the solution index-
ing method that pre-computes and stores the solutions of
the proximity queries. One instance of this technique is the
Voronoi cell based kNN approach (V N3) proposed in [13].
A Voronoi diagram on the network space is computed and
each Voronoi cell that represents the region of the nearest
neighbor in the network is represented by a two-dimensional
polygon. A spatial access method, e.g. the R-tree, is used
to index these Voronoi-cell polygons, such that one-nearest
neighbor queries are reduced to point queries. Furthermore,
it is shown that the network Voronoi diagram can also sup-
port kNN queries (k > 1) by taking the local neighborhood
of the cells into account. However, the performance of the
V N3 approach mainly depends on the density and distribu-
tion of the objects in the network. Dense network graphs
on which the data objects are sparsely distributed lead to
large Voronoi cells with a lot of adjacent neighbor cells. In
this case, the computation of the kNN would have a poor
performance. Hence, the V N3 approach is only suitable for
reasonably dense datasets and/or sparse network graphs.

In this paper, we do not focus on another class of prox-
imity queries in road networks called continuous proximity

queries (as studied e.g. in [12, 3]). Those queries retrieve the
objects satisfying a query condition at any point on the path
of a moving query object, e.g. continuous nearest neighbor
queries generate a set of path regions and their correspond-
ing kNNs, such that each point on a path region (interval)
has the same kNN.

Let us note that the large number of techniques for in-
dexing and querying static or dynamic objects in Euclidean
spaces (e.g. [6, 19, 2] and [26, 22, 23, 24, 25]) do not qual-
ify for proximity queries in traffic networks or generally in
spaces constituting any motion constraints.

3. NETWORK GRAPH EMBEDDING

3.1 Reference Node Embedding for Static and
Dynamic Objects

The basic idea of our approach is to transform the nodes
of any network graph and the objects located on that graph
into a k-dimensional vector space adapting the Lipschitz em-
bedding technique with singleton reference sets called refer-
ence nodes.

Let G = (N, E, W ) be a network graph and N ′ = 〈nr1 , . . . , nrk 〉
a subsequence of nodes, N ′ ⊆ N containing k ≥ 1 nodes
called reference nodes. The metric space (N, dnet) is called
native space throughout the paper. The embedding, or
transformation, of the native space (N, dnet) into a k-dimen-

sional vector space (�k, D) is a mapping F N′
: N∪D → �

k,
where |N ′| = k is the dimensionality of the vector space and
D is the L∞-norm in �k, i.e. D(x, y) = maxi=1..k |xi − yi|,
where x, y ∈ �k are two points of the vector space (�k, D).
A reference node embedding of G based on a set of reference

nodes N ′ ⊂ N defines the function F N′
as follows.

1. For each node n ∈ N ,

F N′
(n) = (F N′

1 (n), . . . , F N′
k (n))T,

where F N′
i (n) = dnet(n, nri) for 1 ≤ i ≤ k.

2. For each object o ∈ D located on a node n, F N′
(o) =

F N′
(n).

3. For each object o ∈ D located on an edge (n1, n2) ∈ E,

F N′
(o) = (F̂ N′

1 (o), . . . , F̂ N′
k (o))T,

where F̂ N′
i (o) = min{d1(o)+F N′

i (n1), d2(o)+F N′
i (n2)}.

For the embedding of a network graph we have to com-
pute for each node and each object the shortest paths to
all reference nodes. As long as the graph structure and the
positions of the objects do not change, this operation has to
be performed only once in a preprocessing step. If we want
to handle dynamic objects, a re-embedding of the objects
would be necessary. In fact, if we assume that the graph
structure remains fixed (which is obviously a realistic as-
sumption) and we store the embedding of the graph nodes
(that do not change), the re-embedding of the objects after
each re-positioning can be done rather efficiently. We can
use the pre-computed embedding of the graph nodes in or-
der to incrementally update the embedding of the dynamic
objects. The computation of the components of the embed-

ding vector F N′
(o) of an object o ∈ D located on an edge

(n1, n2) ∈ E is given by the functions F̂ N′
i (o). These values
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Figure 2: Network graph embedding.

can be very efficiently computed assuming that F N′
(n1) and

F N′
(n2) is given. For this reason, the embedding function

F N′
is very suitable for both static and dynamic objects.

In Figure 2 we demonstrate the embedding of the net-
work graph depicted in Figure 1 using the nodes n8 and
n7 as reference nodes, i.e. N ′ = 〈n8, n7〉. On the left hand
side, the original network graph (native space) including the
object (depicted with crosses) and the reference nodes (em-
phasized by circles) are visualized. On the right hand side,
the transformation of the objects in the vector space using

the embedding function F N′
is shown.

3.2 Distance Estimation
For the sake of simplicity, we use the term“nodes”for both

graph nodes and objects located somewhere in the graph, i.e.
for the elements of the set N∪D in the following. We simply
assume that additional “virtual” nodes are introduced for
each object that is located on an edge as described above.

The reference node embedding can be used to compute
upper and lower bounds for the network distance. In fact,

the embedding function F N′
already provides a conservative

approximation of the network distance, i.e. the distance D
in the embedded space lower bounds the distance dnet in the
native space, formally:

Lemma 1 (lower bounding property).
Let G = (N, E, W ) be a network graph, N ′ ⊂ N be a set of

reference nodes, and F N′
be the reference node embedding

w.r.t. N ′. For any two nodes ni, nj ∈ N ∪ D, the following
statement holds:

D(F N′
(ni), F

N′
(nj)) ≤ dnet(ni, nj).

Proof. Let N ′ = 〈nr1 , .., nrk 〉. Since the network dis-
tance is transitive, the following statements hold:

D(F N′
(ni), F

N′
(nj)) = max

l=1,...,k
|F N′

l (ni) − F N′
l (nj)| =

max
l=1,...,k

|dnet(ni, nrl)) − dnet(nj , nrl))| ≤ dnet(ni, nj)

The embedded space can also be used to define a progres-
sive approximation of the network distance. In particular,
the distance function D∗, which is defined as

D∗(x, y) = min
i=1...k

(xi + yi),

is an upper bound of dnet, formally

Lemma 2 (upper bounding property).
Let G = (N, E, W ) be a network graph, N ′ ⊂ N be a set of

reference nodes, and F N′
be the reference node embedding

w.r.t. N ′. For any two nodes ni, nj ∈ N ∪ D, the following
statement holds:

D∗(F N′
(ni), F

N′
(nj)) ≥ dnet(ni, nj).

Proof. Let N ′ = 〈nr1 , .., nrk 〉. Due to the transitivity of
the network distance, the following statements hold:

D∗(F N′
(ni), F

N′
(nj)) = min

l=1,...,k
(F N′

l (ni) + F N′
l (nj)) =

min
l=1,...,k

(dnet(ni, nrl)) + dnet(nj , nrl))) ≥ dnet(ni, nj)

In summary, the reference node embedding allows the def-
inition of an upper bound D∗ and a lower bound D of the
true network distance that can be used in a filter/refinement
query processing architecture.

3.3 Choosing the Reference Node Set
Obviously, the quality of our approximation distances D

and D∗, i.e. the approximation error w.r.t. the network dis-
tance dnet, depends on the number and location of the used
reference nodes. In this subsection we discuss a suitable
location of the reference nodes.

Let Pbest(ns, nd) be the shortest path between two nodes
ns, nd ∈ N ∪ D. Obviously, for each node ni ∈ N ∪ D in
Pbest(ns, nd), the shortest path from ni to nd, Pbest(ni, nd),
is a subsequence of Pbest(ns, nd). By means of this property
we can identify those object pairs for which the distance
estimation based on a specific reference node set N ′ ⊆ N
is equal to the exact network distance. Let (ni, nj) ∈ (N ∪
D)2 be a pair of nodes for which we want to estimate the
network distance based on the reference node set N ′, then
the following two statement holds:

(1) If a reference node nr ∈ N ′ exists for which nj ∈
Pbest(ni, nr) or ni ∈ Pbest(nj , nr) then

D(F N′
(ni), F

N′
(nj)) = dnet(ni, nj) holds (e.g. object

pair (o1, o2) in Figure 2).

(2) If a reference node nr ∈ N ′ exists for which nr ∈
Pbest(ni, nj) then D∗(F N′

(ni), F
N′

(n)) = dnet(ni, nj)
holds (e.g. node pair (o1, o4) in Figure 2).

Hence, the first statement argues for selecting nodes as ref-
erence nodes that are located at the outer margin of the net-
work graph. The second statement would argue to choose
nodes which are more centrally located in the network as
reference nodes. In general, we can reduce the distance ap-
proximation error by locating the reference nodes as close as
possible to the data objects, such that each object is nearby
to at least one reference node. In the static case, this can
be achieved by clustering the object nodes using a k-medoid
algorithm and take the cluster medoids as reference nodes.
Assuming dynamic objects, we have to adapt the reference
nodes to the average object distribution, e.g. the city center
is a potential hotspot where permanently a lot of objects
are located. If we do not have the chance to identify such
hotspots, we suggest to distribute the set of reference nodes
equally over the network graph.



DRQ(q,ε,G)

candidateSet := ∅;
resultSet := ∅;
/***** FILTER STEP *****/

for each o ∈ D do
if D(F N′

(q), F N′
(o)) ≤ ε then

if D∗(F N′
(q), F N′

(o)) ≤ ε then
add o to resultSet;

else add o candidateSet;

/***** REFINEMENT STEP *****/

for each o ∈ candidateSet do
if dnet(q, o) ≤ ε then

add o to resultSet;
return resultSet;

Figure 3: DRQ algorithm.

4. MULTI-STEP QUERY PROCESSING
In Section 3 we have shown that our reference node em-

bedding approach provides an upper and a lower bounding
approximation for the exact network distance. Thus, our
approach can be successfully applied to a multi-step query
processing in order to efficiently support DRQ and kNNQ
in large network graphs. In the following, we present the
multi-step DRQ and kNNQ using our embedding function

F N′
implementing a reference node embedding. As men-

tioned above, for static objects, the graph embedding has
to be performed only once in a preprocessing step before
any query is launched. In case of dynamic objects, the re-
embedding can be computed rather efficiently on the fly as
sketched in Section 3. For the refinement, we apply an A*
search using our distance approximations as heuristics to
guide the search rather than the traditional Euclidean dis-
tance. Since our approximations are more accurate, even
the refinement step will be accelerated using our concepts.

DRQ. We first perform the filter step by applying a DRQ
over the embedded objects and nodes. All objects for which
the conservative distance approximation D is greater than ε
can be discarded as true drops without refining them. Fur-
thermore, we can immediately add all objects to the result
list if the distance estimation D∗ is lower or equal to ε. Only
the remaining candidates need to be refined by computing
the exact shortest path distance to the query. Obviously,
the filter step should be very fast because D and D∗ can
be computed very efficiently. The pseudocode for a DRQ is
given in Figure 3.

kNNQ. We adapt the multi-step nearest-neighbor algo-
rithm proposed in [18] which is shown to be optimal w.r.t.
the number of candidates that are refined. Since this algo-
rithm can only use a lower bound for the filter step but is not
designed to consider an upper bound, we integrate our up-
per bounding distance approximation by a simple trick. The
resulting algorithm is described in the following, the pseu-
docode is depicted in Figure 4. At first, a ranking query [7]
RQ is initialized on the embedded objects, which incremen-
tally reports the objects o in ascending order of the lower

bounding filter distance D(F N′
(q), F N′

(o)). Then, we ini-
tially fetch the first k candidates from RQ. At this point we
slightly adapt the algorithm proposed in [18]. Before refin-
ing the first k candidates we report those candidates as true
results having an upper bounding distance D∗ to the query

kNNQ(q,k,G)

initialize ranking := RQ(q,D);
resultSet := new list〈dist,objectID〉 sorted by dist;
dmax := ∞;

/***** FILTER STEP (different to [18]) *****/

candidateSet := ∅;
for first k objects o ∈ ranking do

candidateSet.insert(o);

dmax := D(F N′
(candidateSet.get(k)), F N′

(q));
for each o ∈candidateSet do

if D∗(F N′
(o), F N′

(q)) ≤ dmax then

add (D∗(F N′
(o), F N′

(q)),o) to resultSet;

/***** ITERATIVE REFINEMENT (see [18]) *****/

while o = ranking.getNext() and D(o, q) ≤ dmax do
if dnet(o, q) ≤ dmax then

add (dnet(o, q),o) to resultSet;
if |resultSet| ≥ k then

dmax = resultSet[k].dist;
remove all entries from resultSet with dist > dmax;
return resultSet;

Figure 4: kNNQ algorithm.

smaller than the lower bounding distance D of the k-th can-
didate. Afterwards our algorithm proceeds like the original
one performing an iterative refinement as long as the lower
bound of the next object in the ranking is smaller or equal
to the current k-th nearest neighbor distance dmax.

5. EVALUATION
For our experiments we used real road networks of San

Joaquin County (“TG”, approx. 18,300 nodes), San Fran-
cisco (“SA”, approx. 175,000 nodes), and the United Sates
(“NA”, approx. 176,000 nodes). The network objects were
simulated through randomized subsets of the graph nodes.
As explained in Section 3, object nodes can be easily em-
bedded online. The graph was stored on disk implementing
the approach proposed in [17] with a block size of 8 KB
and an average storage load of 71% in order to simulate a
dynamic environment where the disk blocks are usually not
completely filled. Following [17], we organized the graph in
three R-trees where the first manages the nodes, the sec-
ond the edges and the third the polylines, i.e. the detailed
representations of all segments in the network. An embed-
ding vector is considered as a further attribute of a node,
similar to e.g. the node coordinates, and stored along with
it. The two other R-trees holding the edges and the poly-
lines do not need to be modified for our new approach. The
reference nodes were chosen by spatially ordering all graph
nodes along a Hilbert curve. We then uniformly distributed
the reference nodes along this curve. Datasets without an
embedding are denoted as REF and reference node embed-
dings are denoted as 1RNE. All experiments were performed
on a workstation featuring a 1.8 GHz CPU, 2GB RAM, a
random disk page access time of 6 ms, and a transfer rate of
86MB/s. The cache size was set to 5% of the dataset size.
In all experiments, we performed 1,000 random queries and
averaged the results.

5.1 Distance Approximation Using Reference
Node Embeddings

We first evaluated the quality of the distance approxima-
tions gained by our reference node embedding on the TG and
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Figure 6: Number of page accesses per distance
computation for NA and TG.

the NA datasets. Both datasets differ significantly in their
sizes. Figure 5 shows the relative error of the network dis-
tance estimation using the Euclidean distance (lower bound)
as well as D (lower bound) and D∗ (upper bound) w.r.t. the
number of reference nodes used for the embedding. Obvi-
ously, our lower bounding distance estimation D approx-
imates the true network distance far better than the Eu-
clidean distance. In addition, it turns out that also the upper
bound is an accurate approximation of the true distance. In
addition, the results suggest – as expected – that the quality
of the distance approximations gets better with increasing
number of reference nodes. However, for both the TG and
the NA datasets, the increase of the approximation qual-
ity is only small when using more than 10 reference nodes.
This is really notable since TG and NA differ significantly in
the number of total graph nodes and suggests that using 10
reference nodes is a good choice even for very large graphs.

The good quality of our approximations is confirmed by
a further experiment. We computed several sample short-
est paths using the original Dijkstra algorithm, the A* al-
gorithm using the Euclidean distance as distance approxi-
mation, and the A* algorithm using our novel distance ap-
proximations based on a reference node embedding (with
10 reference nodes each). In all cases, the A* algorithm
using our novel distance approximations significantly out-
matched the other approaches. Figure 6 illustrates the av-
erage number of page accesses per shortest path computa-

Figure 7: Search space for computing a sample
shortest path (marked in orange) with Dijkstra
(blue), A* Euclidean (red), and RNE with 10 ref-
erence nodes (green).

tion on the NA and TG datasets w.r.t. different numbers
of reference points. Again it can be seen that choosing 10
reference nodes yields a considerable speed-up over tradi-
tional approaches. The reason for the performance boost is
illustrated in Figure 7 showing the search space of the three
competing shortest path computation approaches for a sam-
ple query (best seen in color). As it can be seen, the search
space of the A* algorithm using our novel distance approxi-
mations is clearly reduced in comparison to the search space
of the traditional Dijkstra algorithm and the A* algorithm
using the Euclidean distance.

5.2 Filter/Refinement Query Processing
In the following, we evaluate the performance of our novel

filter/refinement query processing using a reference node
embedding with 10 reference nodes. We examine the perfor-
mance of the proposed method w.r.t. the relative density of
data objects in the network graph, i.e. |D|/|N |.
DRQ. In Figures 8(a) and 8(b) the performance of our fil-
ter/refinement query processing for DRQ is shown in terms
of the average number of page accesses and number of can-

didates that need to be refined w.r.t. the object density |D|
|N| .

We evaluated DRQs with different query selectivities, in par-
ticular, selectivities of 5%, 10%, and 15% of |D|. Let us
note that the x-axes in Figures 8(a), and 8(b) are in log
scale. Thus, we observe that the number of page accesses as

well as the number of candidates scales linear in |D|
|N| . It can

also be derived from Figures 8(a) and 8(b), that applying
the filter step is more efficient than performing a single-step
algorithm using our Shortest Path algorithm (depicted as
“REF” in the Figure) even for considerably small densities
|D|/|N |.
kNNQ. Similar observations can be made when evaluating
our filter/refinement query processing for kNNQ (cf. Figures
9(a) and 9(b)). We varied the number k of nearest neigh-
bors and report results for k = 5, 10, 20. As it can be seen,



0.001 0.01

query relevant objects, density (log.)

0

200

400

600

800

1000

1200

1400

1600

p
a

g
e

 a
c
c
e

s
s
e

s
 (

a
v
g

.)

REF, 5%
1RNE, 5%
REF, 10%
1RNE, 10%
REF, 15%
1RNE, 15%

(a) NA dataset

0.001 0.01

query relevant objects, density (log.)

0

50000

100000

150000

200000

p
a

g
e

 a
c
c
e

s
s
e

s
 (

a
v
g

.)

REF, 5%
1RNE, 5%
REF, 10%
1RNE, 10%
REF, 15%
1RNE, 15%

(b) SF dataset

Figure 8: DRQ.

the filter works very well for rather low densities |D|/|N |
producing a small number of candidates. After a “jump”
at a certain object density, the number of page accesses as

well as the number of candidates again scale linear in |D|
|N| .

Please note that the scaling of the y-axis of the SF dataset
is logarithmic. The decreasing tendency of the page accesses
for both datasets can be explained with the increasing den-
sity of the query relevant objects. The higher the density,
the less pages have to be accessed in order to locate the k
nearest neighbors.

5.3 Comparison with other Approaches
We chose the distance signature (DS) approach [8] as com-

parison partner because it outperforms other methods such
as the network voronoi diagram [13]. The DS method was
parameterized as described in [8]. In order to guarantee a
fair comparison, we computed two embeddings: one embed-
ding used 30 reference nodes and used 60 reference nodes.
For an object density of 0.01 the embedding with 30 ref-
erence nodes requires half of the storage space required by
the DS approach, whereas the embedding with 60 reference
nodes occupies an equal amount of storage space required
by the DS approach. Let us note that the object density
linearly influences the memory footprint of our embedding
technique. In contrast, for the DS approach the relation-
ship between object density and memory consumption is
quadratic.

Performance Comparison. The DRQ experiments in
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Figure 9: kNNQ.

Figure 10 show that the DS approach is outperformed by
all our approaches up to one order of magnitude in terms
of the number of required page accesses. In fact, even an
embedding with 10 reference nodes clearly outperforms the
DS approach while saving more than 3/4 of the storage cost
compared to the DS method.

Update Cost Comparison. Due to space limitations,
the comparative experiments on the cost of updating the em-
beddings for moving objects of both approaches are omitted.
However, it is worth noting that our approach again signifi-
cantly outperforms the DS approach. This is due to the fact
that the update of the embedding vector of a moving object
can be computed rather simple from the embedding of the
network graph (see Section 3) and in general needs at most
one page access per update. Even if an object moves to a
new edge, the embedding of the network nodes remains fixed
and only the embedding of the particular object requires re-
computation.

5.4 Summary
In summary, our experiments show that our novel embed-

ding yields accurate lower and upper bounds that can be
used in a filter/refinement approach to efficiently support
distance range and nearest neighbor queries; due to these
accurate filter distances, our multi-step query processing
significantly outperforms single-step query processing and
existing multi-step query processing approaches.
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6. CONCLUSIONS
We proposed a novel graph embedding technique which is

suitable for static and dynamic objects using the concept of
reference nodes. This embedding provides an efficient and
effective upper and lower bound for the network distance
and, thus, can be used to implement a filter/refinement ar-
chitecture for similarity search in large traffic networks. Our
experiments show that our novel approach outperforms ex-
isting competitors in terms of pruning power in the filter
step, thus, requiring far less calls of the Dijkstra (or A*-
search) algorithm for exact shortest path computation.
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