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Abstract. One of the main characteristics of Semantic Web (SW) data is that it
is notoriously incomplete: in the same domain a great deal might be known for
some entities and almost nothing might be known for others. A popular example
is the well known friend-of-a-friend data set where some members document ex-
haustive private and social information whereas, for privacy concerns and other
reasons, almost nothing is known for other members. Although deductive rea-
soning can be used to complement factual knowledge based on the ontological
background, still a tremendous number of potentially true statements remain to be
uncovered. The paper is focused on the prediction of potential relationships and
attributes by exploiting regularities in the data using statistical relational learning
algorithms. We argue that multivariate prediction approaches are most suitable
for dealing with the resulting high-dimensional sparse data matrix. Within the
statistical framework, the approach scales up to large domains and is able to deal
with highly sparse relationship data. A major goal of the presented work is to
formulate an inductive learning approach that can be used by people with little
machine learning background. We present experimental results using a friend-of-
a-friend data set.

1 Introduction

The Semantic Web (SW) is becoming a reality. Most notably is the development around
the Linked Open Data (LOD) initiative, where the term Linked Data is used to describe
a method of exposing, sharing, and connecting data via dereferenceable Unique Re-
source ldentifiers (URIS) on the Web. Typically, existing data sources are published in
the Semantic Web’s Resource Description Framework (RDF), where statements are ex-
pressed as simple subject-property-objecp, o) triples and are graphically displayed

as a directed labeled link between a node representing the subject and a node repre-
senting the object (Figure 1). Data sources are interlinked with other data sources in
the LOD cloud. In some efforts, subsets of the LOD cloud are retrieved in reposito-
ries and some form of logical reasoning is applied to materialize implicit triples. The
number of inferred triples is typically on the order of the number of explicit triples.
One can certainly assume that there are a huge number of additional true triples which
are neither known as facts nor can be derived from reasoning. This might concern both



triples within one of the contributing data sources such as DBpéititralinks), and
triples describing interlinks between the contributing data sources. The goal of the work
presented here is to estimate the truth values of triples exploiting patterns in the data.
Here we need to take into account the nature of the SW. LOD data is currently dynami-
cally evolving and quite noisy. Thus flexibility and ease of use are preferred properties
if compared to highly sophisticated approaches that can only be applied by machine
learning experts. Reasonable requirements are as follows:

— Machine learning should be “push-button” requiring a minimum of user interven-
tion.

— The learning algorithm should scale well with the size of the SW.

— The triples and their probabilities, which are predicted using machine learning,
should easily be integrated into SPARQL-type querying.

— Machine learning should be suitable to the data situation on the SW with sparse
data (e.g., only a small number of persons are friends) and missing information
(e.g., some people don't reveal private information).

Looking at the data situation, there are typically many possible triples associated
with an entity (these triples are sometimes called entity molecules or, in our work, sta-
tistical unit node set) of which only a small part is known to be true. Due to this large
degree of sparsity of the relationship data in the SW, multivariate prediction is appro-
priate for SW learning. The rows, i.e., data points in the learning matrix are defined by
the key entities or statistical units in the sample. The columns are formed by nodes that
represent the truth values of triples that involve the statistical units. Nodes representing
aggregated information form the inputs. The size of the training data set is under the
control of the user by means of sampling. Thereby the data matrix size, and thus also
training time, can be made independent or only weakly dependent on the overall size of
the SW. For the experiments in this paper we use the friend-of-a-friend (FOAF) data set,
which is a distributed social domain describing persons and their relationships in SW-
format. Our approach is embedded in a statistical framework requiring the definition of
a statistical unit and a population. In our experiments we compare different sampling
approaches and analyze generalization on a test set.

The paper is organized as follows. In the next section we discuss related work,
In Section 3 we discuss how machine learning can be applied to derive probabilistic
weights for triples whose truth values are unknown and introduce our approach. In
Section 4 we present experimental results using a friend-of-a-friend (FOAF) data set.
Finally, Section 5 contains conclusions and outlines further work.

2 Related Work

The work on inductive databases [1] pursues similar goals but is focussed on the less-
problematic data situation in relational databases. In [2] the authors describe SPARQL-

4 http://dbpedia.org/
5 SPARQL is a new standard for querying RDF-specific information and for displaying querying
results.



knows

’ hasincome hasincome

Fig. 1. Example of an RDF graph displaying a social friendship network in which the income of

a person is an attribute. Resources are represented by circular nodes and triples are represented
by labeled directed links from subject node to object node. The diamond-shaped nodes stand for
random variables which are in stateeif the corresponding triples exist. Nodes representing
statistical units (here?erson$ have a darker rim.

ML, a framework for adding data mining support to SPARQL. SPARQL-ML was in-
spired by Microsoft’s Data Mining Extension (DMX). A particular ontology for spec-
ifying the machine learning experiment is developed. The SRL methods in [2] are
ILP-type approaches based on a closed-world assumption (Relational Bayes Classi-
fier (RBC) and Relational Probabilistic Trees (RPT)). This is in difference to the work
presented here, which maintains more of an open-world assumption that is more ap-
propriate in the context of the SW. Another difference is that in our work, both model
training and statement prediction can be performed off-line, if desired. In this case in-
ferred triples with their associated certainty values can be stored , e.g., in a triple store,
enabling fast query execution.

Unsupervised approaches (examples that are suitable for the relational SW domain
are [3-6]) are quite flexible and interpretable and provide a probability distribution
over a relational domain. Although unsupervised approaches are quite attractive, we
fear that the sheer size of the SW and the huge number of potentially true statements
make these approaches inappropriate for Web-scale applications. Supervised learning,
where a model is trained to make a prediction concerning a single random variable
typically shows better predictive performance and better scalability. Typical examples
are many ILP approaches [7, 8] and propositionalized ILP approaches [9, 10]. Multi-
variate prediction generalizes supervised learning to predict several variables jointly,
conditioned on some inputs. The improved predictive performance in multivariate pre-
diction, if compared to simple supervised learning, has been attributed to the sharing of
statistical strength between the multiple tasks, i.e., data is used more efficiently see [11]
and citations therein for a review). Due to the large degree of sparsity of the relation-
ship data in the SW, we expect that multivariate prediction is quite interesting for SW
learning and we will apply it in the following.



3 Statistical Modeling

3.1 Defining the Sample

We must be careful in defining the statistical unit, the population, the sampling pro-
cedure and the features. A statistical unit is an object of a certain type, e.g., a person.
The population is the set of statistical units under consideration. In our framework, a
population might be defined as the set of persons that attend a particular university. For
learning we use a subset of the population. In the experimental section we will explore
various sampling strategies. Based on the sample, a data matrix is generated where the
statistical units in the sample define the rows.

3.2 The Random Variables in the Data Matrix

We now introduce for each potential tripletidple nodedrawn as a diamond-shaped
node in Figure 1. A triple node is in stav@e(true) if the triple is known to exist and is
in statezero(false if the triple is known not to exist. Graphically, one only draws the
triple nodes in statene i.e., the existing triples.

We now associate some triples with statistical units. The idea is to assign a triple
to a statistical unit if the statistical unit appears in the triple. Let's consider the statisti-
cal unitJane Based on the triples she is participating in, we ob{&jpersonA, typeOf,
Person) (Joe, knows, ?personfdnd(?personA, hasincome, Highhere?personAs
a variable that represents a statistical unit. The expressions form the random variables
(outputs) and define columns in the data maitrBy considering the remaining sta-
tistical unitsJackandJoewe generate the expressions (columii8personA, knows,
Jane)and (Jack, knows, ?personAyVe will not add(Jane, knows, ?personA)nce
Jane considers no one in the data base to be her friend. We iterate this procedure for
all statistical units in the sample and add new expressions (i.e., columns in the data
matrix), if necessary. Note that expressions that are not represented in the sample will
not be considered. Also, expressions that are rarely true (i.e., for few statistical units)
will be removed since no meaningful statistics can be derived from few occurrences.
In [12] the triples associated with a statistical unit were denotesfadistical unit node
set (SUNS). The matrix formed with thé&/ statistical units as rows and the random
variables as columns is denotedas

3.3 Non-random Covariates in the Data Matrix

The columns we have derived so far represent truth values of actual or potential triples.
Those triples are treated as random variables in the analysis. If the machine learning
algorithm predicts that a triple is very likely, we can enter this triple in the data store.
We now add columns that provide additional information for the learning algorithm but
which we treat as covariates or fixed inputs.

First, we derive simplified relations from the data store. More precisely, we consider
the expressions derived in the last subsection and replace constants by variables. For

8 Don't confuse a random variable representing the truth value of a statement with a variable in
a triple, representing an object.



example, from(?personA, knows, Jan&)e derive(?personA, knows, ?personBid
count how often this expression is true for a statistical @pérsonAi.e., we count the
number of friends of persaPpersonA

Second, we consider a simple type of aggregated features from outside a SUNS.
Consider first a binary triplé¢?personA, knows, Jane)lf Jane is part of another bi-
nary triple, in the exampld;?personA, hasincome, Higth)en we form the expression
(?personA, knows, ?personB)?personB, hasincome, Highipd count how many rich
friends a person has. A large number of additional features are possible but so far we
restricted ourselves to these two types. The matrix formed withMisatistical units
as rows and the additional features as columns is denot&d as

After construction of the data matrix we prune away column&’iand inY” which
haveonesin fewer thane percent of all rows, whereis usually a very small number.
This is because for those features no meaningful statistical analysis is possible. Note
that by applying this pruning procedure we reduce the exponential number of random
variables to typically a much smaller set.

3.4 Algorithms for Learning with Statistical Units Node Sets

In a statistical setting as described above, the statistical unit node set (SUNS) is defined
mostly based on local neighborhoods of statistical units. By adding aggregated infor-
mation derived from the neighborhood, homophily can also be modeled. For instance,
the income of a person can be predicted by the average income of this person’s friends.

As we will see in the experiments, the resulting data matrices are typically high-
dimensional and sparse. In this situation, multivariate prediction approaches have been
most successful [11]. In multivariate prediction all outputs are jointly predicted such
that statistical strength can be shared between outputs. The reason is that some or all
model parameters are sensitive to all outputs, improving the estimates of those param-
eters’

We apply four different multivariate prediction approaches. First, we utilize a re-
duced rank penalized regression (RRPP) algorithm to obtain an estimated matrix via
the formula

. d
Y_Urdiagr<d J’;A) uly
k

whered;, andU,. are derived from a-rank eigen decomposition of the kernel matrix
K = UTDTUTT. U, is aN x r matrix with » orthonormal columnsdiag,. (d;iﬁ)

is a diagonal matrix containing the largest eigen values anklis a regularization
parameter. The kernel matriX can be defined application specifically. Typically, as
in the following application, one works with a linear kernel definedby= ZZ7,

whereZ = [aX,Y] is formed by concatenatingy’ andY and wherex is a positive
weighting factof

7 Although the completion is applied to the entire matrix, ardyos—representing triples with
unknown truth values— are overwritten.

8 Alternatively, we can define a linear kernel solely based on the input attritiites X X7,
whena — oo, or solely based on the output attribufes= Y'Y”, whena = 0.



Date

#BlogPosts Person

OnlineChat
Account

Interest

Location School

Fig. 2. Entity-relationship diagram of the LJ-FOAF domain

Besides RRPP we investigate three other multivariate prediction approaches based
on matrix completion, i.e., singular value decomposition (SVD), non-negative matrix
factorization (NNMF) [13] and latent Dirichlet allocation (LDA) [14]. All approaches
estimate unknown matrix entries via a low-rank matrix approximation. NNMF is a
decomposition under the constraints that all terms in the factoring matrices are non-
negative. LDA is based on a Bayesian treatment of a generative topic model. After
matrix completion of theeroentries in the data matrix, the entries are interpreted as
certainty values that the corresponding triples are true. After training, the models can
also be applied to statistical units in the population outside the sample.

4 Experiments

4.1 Data Set and Experimental Setup

Data Set: The experiments are based on friend-of-a-friend (FOAF) data. The purpose
of the FOAF project [15] is to create a web of machine-readable pages describing peo-
ple, their relationships, and people’s activities and interests, using W3C’'s RDF tech-
nology. The FOAF ontology is based on RDFS/OWL and is formally specified in the
FOAF Vocabulary Specification 0.81

We gathered our FOAF data set from user profiles of the community website Live-
Journal.cornt. All extracted entities and relations are shown in Figure 2. In total we
collected 32,062 persons and all related attributes. An initial pruning step removed little
connected persons and rare attributes. Table 1 lists the number of different individuals
(top rows) and their known instantiated relations (bottom rows) in the full triple set,
in the pruned triple set and in triples sets in different experiment settings (explained
below). The resulting data matrix, after pruning, has 14,425 rows (persons) and 15,206
columns. Among those columns 14,425 ones (friendship attributes) refer to the prop-
ertyknows The remaining 781 columns (general attributes) refer to general information

% http://xmins.com/foaf/spec/
10 http:/www.livejournal.com/bots/
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Fig. 3. Evaluated sampling strategies

about age, location, number of blog posts, attended school, online chat account and in-
terest.

Data Retrieval and Sampling Strategies:In our experiments we evaluated the gener-
alization capabilities of the learning algorithms given eight different settings. The first
four settings are illustrated in Figure 3. A cloud symbolizes the part of the Web that
can effectively be accessed (in our case the data set given in Table 1). Crosses represent
persons that are known during the training phase (training set) and circles represent
persons wittknowsrelations that need to be predicted.

Setting 1 describes the situation where the depicted part of the SW is randomly acces-
sible, meaning that all instances can be queried directly from triple stores. Statistical
units in the sample for training are randomly sampled and statements for other ran-
domly selected statistical units are predicted for testing (inductive setting). In this
setting, persons are rarely connected bykthewsrelations. Theknowsrelation in
the training and test set is very spar8d §%).

Setting 2 also shows the situation where statistical units in the sample are randomly
selected, but this time the truth values of statements concerning the statistical units
in the training sample are predicted (transductive setting). Some instances of the
knowsrelation of the selected statistical units are withheld from training and used
for prediction. Prediction should be easier here since the statistics for training and
prediction match perfectly.

Setting 3 assumes that the Web address of one user (i.e., one statistical unit) is known.
Starting from this random user, users connected bktiosvsrelation are gathered
by breadth-first crawling and are then added as rows in the training set. The test
set is gathered by continued crawling (inductive setting). In this way all profiles
are (not necessarily directly) connected and training profiles show a higher con-
nectivity (1.02%) compared to test profile§.44%). In this situation generalization
can be expected to be easier than in setting 1 and 2 since local properties are more
consistent than global ones.

Setting 4 is the combination of settings 2 and 3. The truth values of statements con-
cerning the statistical units in the training sample are predicted (transductive set-
ting). Instances of thenowsrelation are withheld from training and used for pre-
diction.

Settings 5-8 use the same set of statistical units as settings 1-4 respectively. The dif-
ference is that in settings 1-4 the data matrix only contains friendship relations



to persons in the sample whereas in settings 5-8, the data matrix contains friend-
ship relations any persons in the population. In settings 5-8 we remove those users
(friendship attributes) who are known by less than ten users (statistical units), i.e.,

e = 10. We ended up with a large number of ones in the data matrix when compared

to settings 1-4. The concrete numbers of the statistical units and the friendship at-
tributes are shown iRerson(row) andPerson(col) respectively in Table 1.

Evaluation Procedure and Evaluation Measure: The task is to predict potential
friends of a person, i.eknowsstatements. For each person in the data set, we randomly
selected on&nowsfriendship statement and set the corresponding matrix enzgrtp

to be treated as unknown (test statement). In the test phase we then predicted all un-
known friendship entries, including the entry for the test statement. The test statement
should obtain a high likelihood value, if compared to the other unknown friendship en-
tries. Here we use the normalized discounted cumulative gain (NDCG) [16] (described
in the Appendix) to evaluate a predicted ranking.

Benchmark methods: Baseline: Here, we create a random ranking for all unknown
triples, i.e., every unknown triple gets a random probability assigfréehds of friends

in second depth (FOF, d=2)We assume that friends of friends of a particular person
might be friends of that person too. From the RDF graph point of viewktimvs
relation propagates one step further alongside the exikting/slinkages.

4.2 Results

In settings 1 and 2 we randomly sampled 2,000 persons for the training set. In addition,
in setting 1 we further randomly sampled 2,000 persons for the test set. In setting 3,
4,000 persons were sampled, where the first half was used for training and the second
half for testing. Setting 4 only required the 2,000 persons in the training set. In settings
5-8 we followed the same sampling strategies as in settings 1-4 respectively and ex-
tracted all users known by the sampled users to form the friendship attributes. In each
case, sampling was repeated 5 times such that error bars could be derived. Table 1 re-
ports details of the samples (training set and, if applicable, test set). The two benchmark
methods and the four multivariate prediction approaches proposed in Section 3.4 were
then applied to the training set. For each sample we repeated the evaluation procedure
as described above 10 times. Since NNMF is only applicable in a transductive setting,
it was only applied in setting 1, 3, 5 and 7. Moreover, B@F, d=2 is not applicable

in settings 5-8, since it is impossible for many statistical units to access the friends of
their friends.

Figures 4 and 5 show the experimental results for our FOAF data set. The error bars
show the 95% confidence intervals based on the standard error of the mean over the
samples. The figures plot tidDCG all score of the algorithms against the number of
latent variables in settings 1, 2, 5, 6 in Figure 4 and in settings 3, 4, 7, 8 in Figure 5.
The bestNDCG all scores of all algorithms in different settings are shown in Table 2,
wherer indicates the number of latent variables achieving the best scores.



S9|qeleA 1Uale| JO Jaquinu ay) 10} SPUBIBYM [RAIS1UI 82USPIIU0D 9466 YIM sajdwes Jano pabelane e 9DANIseg 'z ajgel

00t7=+ 00tr=+ 0017=-+ 00t7=+ 00tr=+ 00t=- 00t7=+ 00t7=+

L€20°0 FT6S€°'08800°0 F2092°061700°0 F28SE'06TO0'0 F9562°060T0°0 FSTEE 06100°0 F2522°0LE00°0 F6%7.2°0BTO0°0 FEBYC O|ddHH
00Z=+ 0GT=+ 00Z=+ 0ST=+ 00Z=+ 00Z=+ 00Z=+ 00Z=+

¢/,€0°0 FOLVE0EYTO'0 FTEEC'06L00°0 F6SEE'0LC00°0 FO¥9C'0LTTO'0 FLEE'0ECTO'0 F8822°0LS00°0 F8862°06%700°0 F1S2°0|\Vd T
0G=+ 00T=+ 0GT=+ 0ST=+ 00T=+ 00Z=+ 00T=+ 0GT=+

6.T0°0 FTTYE 0ETY0'0 FL0¥2°'0£600°0 F9LTE OYY00'0 F+8892°06.T0°0 +.20€°0LPTO'0 F5802°0yL00°0 FS2EC'0T900°0 F7LTZ0|d AS
00T=+ 0GT=+ 0GT=+ 00T=+

€070°0 FLTZE'0|NEN £900°0 F1982'0|NEN /6T0'0 €862 0|NEN 85000 FT20Z'0|NEN ANWNN
NEeN NEeN NEN NeN //00°0 FS6¥T°0/200°0 FS6¥T°06600°0 FOrTZ 066000 FOrT2Z'0|c =P HOA
Z00°0 F9TZT 01000 FITZT'05000°0 FETZT'0E000°0 FETZT'OL000'0 F60T 0L000°0 F¥60T°'0EO000°0 FZ60T'0EO00'0 FZ60T 0|PUtlesvg
g bumas ) Bumes b Bumas & Bumos } Bumes £ Bumoes g Bumas I Bumos poura

sbumas [eluawadxa
JuBJIaYIP BY} 40} SINSNEIS pue (1x81 9as) 18s a|dul paunid ayl ul 18s aduy [N} BYI Ul SUOITE|aJ PaleIIUEISUI JO JagUINU pue S[enpIAIpul JO JaquinN T 3|qel

¥66'T [66'T y66'T E66'T E66'T E66'T I66'T [66'T y66'T E66'T E66'T £66'T H9EVT 6S6'TE paisod

6.1 8. 611 GT. ST, |LLL 6./ 8. |6LL GT.L ST, L1 182'S DY0'0T |44 f O210p

89T‘'T [/0'T BIT'T 80T 80T vET'T BOT'T KZ0'T BOT'T [80'T U80'T vET'T BIE'8 [20'6T sploy

9T¢ 80Z¢ [9T¢ 14 9vZ 190Z 91¢ 80Z [9T¢ elg4 9Z [90Z BSO‘'T PT9'6 sDY

8T/, 6. [BT. A /v, 9.9 ST. 6. [BT. A /v, 9.9 B80'S /0S'TE Spuao

CLT'T YTZC'T BLT'T POT'T POT'T gCT'T ELT'T [TC'T gLT'T DOT'T POT'T ECT'T p96'L B9IE'vC IUIPLSIL

%TOT PAZL 0TI T PASL0 DASL0D699°0 20T Povy 0 P20 T 248T0 ST OPAST 0 46T°0 PeSO0 |(firzs.vds) 1sul#
G0/'Ty H§6G'8THO0L'TY 698'9T £98'9THO6'VYT 98L'0F ETQ'LTP8L'Ov BEE'L PBEE'L TTE'L [2E'98ETEB'0ES SMouy| 3]0y
S S S S S S S S S S S S S S spsod boje #

14 14 14 14 14 14 14 14 14 14 14 14 174 14 210

] ] ] ] ] ] ] S ] ] ] ] ] ] YYD U

81T 81T QBTT 8TT 8TT [BTT 8TT 8TT [BTT 8TT 8TT [BTT 8TT 669‘Y 1s9423UT

6¢€ 6CE |6CE 62€ 6C€ |6CE 6C€ 6CE |6CE 62€ 6CE€ |6CE 62€ vi.'ST 1o0yo8

0ce 0Z€ |0cCE 0ce 0cE |0cE 0ce 0Z€ |0cE 0ce 0ce [0CE 0ce £29'G UOLIDI0J

162'T [62'T 62T E2T'T EgCI'T gCI'T DOO'C pPOO‘C POO‘Z DPOO'C pPOO‘C POO'C |- - (j02) uos.iag | "INpU|#
000'Z2  DO0‘Z DPOO‘Z POO‘'Z DPOO‘Z POO‘'Z DPOO‘Z  POO‘Z POO‘Z DOO'Z  DOO‘Z POO‘Z G2Z¥'vT £90'2E |(Moa) uos.a1daouo)

1591 [Buiuren 1591 [Buures 1591 [Buiuren 1591 [puiuren
gbumes| ,bBumes 9bumes| gbumas pbumes| gbumes gbumes| TOumes |paunud | |ny




NDCG all

NDCG all

NDCG all

——Baseline

0.15f £ f -5-FOF, d=2 0.15 . i ——Baseline

—+—SVD -=-8VD
——LDA +—+ + + + + ——LDA

04 +—+ + + + + ——RRPP 04 ——RRPP

‘0 100 200 300 400 500 ‘0 100 200 300 400 500
Number of latent variables Number of latent variables
(a) (c)
0.4 T 0.4

o
w
ol
o
w
ol

o
w
o
w

=
0.25 i 3 0251
! & a b4
e I 2
0.2 ; ——Baseline 0.2 :
’ —=FOF, d=2 ’ ——Baseline
——NNMF ——NNMF
0.15}f —=8VD 0.15}F : —-8VD
—~-LDA ! i ~~LDA
o —+RRPP o A T -+ RRPP
’ 100 200 300 400 500 ‘0 100 200 300 400 500
Number of latent variables Number of latent variables
(0) (d)

Fig. 4. Comparison between different algorithm¢DCG all is plotted against the number of
latent variables{a)-(d) for settings 1, 2, 5, 6 respectively.

First, we observe that the experimental results in settings 5-8 are much better than
those in settings 1-4. This can be attributed to the fact that in settings 5-8 columns were
pruned more drastically and a more dense friendship pattern was achieved.

Another observation is that all four multivariate prediction approaches clearly out-
perform the benchmark algorithms in all settings, although in settings 1 and 2 NNMF
and SVD are only slightly better than FOF, d=2.

Furthermore, we observe that LDA and RRPP outperform NNMF and SVD in each
setting, and that LDA and RRPP are not sensitive to the number of latent variables
as long as the chosen number is reasonably high. LDA reaches its maximum NDCG
score, for instance, withh = 150 latent variables in setting 4 and the performance
does not deteriorate when the number of latent factors is increased. The score of RRPP
keeps increasing and does not drop down in the observed range of the number of latent
variables. In contrast, NNMF and SVD are sensitive with respect to the predefined
number of latent variables.

Comparing the results over different settings we can observe that for the multivariate
prediction approaches one obtains best performance in setting 4, next best performance
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Fig. 5. Continue Figure 4{a)-(d) for settings 3, 4, 7, 8 respectively.

in setting 2, then follows setting 1 and 3 is the most difficult setting. The corresponding
order can be seen in settings 5-8. The baseline method, random guess, is independent
to the settings and achieves almost the same score in all settings. The fact that the
scores in settings 4 and 8 are the best indicates that a link-following sampling strategy
in general gives better performance than random sampling. Similar results in statistical
comparisons between random and link-following sampling have been obtained in other
works, e.g., [17].

Finally, we observe that the prediction performance in setting 1 is only slightly
worse than the prediction performance in setting 2, while the prediction performance in
setting 4 is much better than in setting 3. This phenomenon occurs in settings 5-8 too.
We attribute this to the general statistics in the training and the test set which are very
different both in setting 3 and setting 7. In Table 1 it is apparent that for instance, in
setting 3 theknowsrelation in the training data set (1.02%) is significantly more dense
than in the test data set (0.44%). Intuitively speaking, the people in the training know
each other quite well, but the people in the test do not know the people in the training
as much.
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5 Conclusions and Outlook

The paper describes extensions to the SUNS approach introduced in [12]. The SUNS
approach is based on multivariate prediction which is quite suitable for the typical SW
data situation. In our experiments based on the FOAF data set, LDA and RRPP showed
best performance, and the performance is insensitive to the rank of the approximation,
resp. to the number of latent variables. This can be explained by the fact that LDA, in
contrast to NNMF, is a Bayesian approach and by the fact that the RRPP, in contrast
to SVD, is regularized. Thus LDA or RRPP can be default methods being insensitive
to exact parameter tuning. All four approaches exploited the benefits of multivariate
prediction since approaches based on single predictions (not reported here) did not even
reach the performance of the benchmark approaches.

The proposed approach can be extended in many ways. One might want to allow the
user to specify additional parameters in the learning process, if desired, along the line
of the extensions described in [2]. Another extension concerns ontological background
knowledge. So far, ontological background knowledge was considered by including
logically inferred statements into learning. Ongoing work explores additional ways of
exploiting ontological background information, e.g., for structuring the learning matrix.

Finally we want to demonstrate how learned probabilistic statements can be queried.
The following SPARQL query illustrates a query for LiveJournal users who live in
Munich and might want to be Trelena’s friend:

PREFIX ya: http :// blogs . yandex . ru/schema/ foaf /
PREFIX foaf: http :// xmins . com/ foaf /0.1/
PREFIX dc: http :// purl .org/dc/elements /1.1/
SELECT DISTINCT ?person
WHERE
{ ?person ya:located ?city .
?person foafknows < http :// trelana . livejournal .com/ trelana >
WITH PROB?prob .
FILTER REGEXZ?city, "Munich") .

}
ORDER BY DE$@prob)

The query includes the predict&dowstriples for Trelena and rates them by predicted
probability.

Acknowledgements: We acknowledge funding by the German Federal Ministry of
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6 Appendix

Details on the NDCG Score

We use the normalized discounted cumulative gain (NDCG) to evaluate a predicted
ranking. NDCG is calculated by summing over all the gains in the ranklistth a log



discount factor as
NDCG(R
Z log(1+ k)’

wherer (k) denotes the target label for tleth ranked item inR, andr is chosen such

that a perfect ranking obtains value 1. To focus more on the top-ranked items, we also
consider theNDCG@nwhich only counts the top items in the rank list. These scores

are averaged over all ranking lists for comparison.
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